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Abstract

The predominant setting in classic auction theory considers
bidders as utility maximizers (UMs), who aim to maximize
quasi-linear utility functions. Recent autobidding strategies
in online advertising have sparked interest in auction de-
sign with value maximizers (VMs), who aim to maximize the
total value obtained. In this work, we investigate revenue-
maximizing auction design for selling a single item to a
mix of UMs and VMs. Crucially, we assume the UM/VM
type is private information of a bidder. This shift to a multi-
parameter domain complicates the design of incentive com-
patible mechanisms. Under this setting, we first characterize
the optimal auction structure for auctions with a single bidder.
We observe that the optimal auction moves gradually from a
first-price auction to a Myerson auction as the probability of
the bidder being a UM increases from 0 to 1. We also extend
our study to multi-bidder setting and present an algorithm for
deriving the optimal lookahead auction with multiple mixed
types of bidders.

Introduction
In the past decades, online advertising has experienced sig-
nificant success through effective auction design. The role of
online advertising auctions in generating revenue for many
IT companies is immense. At the same time, the scale and
complexity of the online advertising market have led to the
development and adoption of more efficient auction designs
for the online environment.

The classical auction theory mainly builds upon the util-
ity maximizer (UM) model; the objective of a UM is to
maximize her (quasi-linear) utility, which is the difference
between the allocated value and the payment. In the mean-
while, the growing adoption of autobidding in online adver-
tising has motivated a new value maximizer (VM) paradigm
(Aggarwal, Badanidiyuru, and Mehta 2019; Balseiro et al.
2021; Deng et al. 2021). Unlike the UMs, the objective of
a VM is to maximize the total value she receives. VM can
be used to model, for example, a company’s advertising de-
partment that cannot collect the unspent budget (Lu, Xu,
and Zhang 2023). Consider an ad exchange (ADX) in on-
line ads systems, which is the auctioneer facing bids from
the demand-side platforms (DSPs). Modern DSPs provide
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auto-bidding services for advertisers, meaning DSPs know
the bidder’s value and type, whereas ADX does not. In this
scenario, a well-designed auction format can assist in gener-
ating more profits and facilitating better resource allocation.

Besides advertising auctions, art auctions can also involve
scenarios where both UM and VM coexist. Art pieces are
unique and often hold sentimental or historical value, mak-
ing collectors or enthusiasts more inclined to purchase them
at higher prices. Hence, they could be considered VMs in
this context. However, some other bidders buy the art pieces
for their potential investment value. These bidders should be
modeled as UMs, resulting in the coexistence of UMs and
VMs in art auctions. Note that VMs are usually more will-
ing to spend money in an auction, which means there is a
large potential for the mechanism to extract more revenue
from them.

In most previous works, UMs and VMs are usually con-
sidered separately. That is, all bidders in an auction are as-
sumed to have the same UM/VM type. However, since dif-
ferent advertisers usually have different bidding strategies, a
practical online advertising platform will usually see a mix-
ture of UMs and VMs participating in an auction simultane-
ously, and moreover, the auctioneer cannot distinguish be-
tween them.

The presence of both UMs and VMs brings additional
challenges designing Incentive Compatible (IC) and Individ-
ually Rational (IR) mechanisms. Specifically, relying on the
bidders who bid their own types makes them able to benefit
by misreporting both of their values and/or UM/VM types.
The problem moves to the multi-parameter from the single-
parameter domain, where people have little understanding
of the optimal auction design in most settings.

In this work, we investigate the revenue-maximizing op-
timal auction design for mixed bidders under the Bayesian
setting1. Our main results are:

• We provide a neat characterization of IC auctions in the
presence of both UMs and VMs simultaneously. We then
express the revenue as a function only related to the al-
location for UMs. Unlike the single-parameter environ-
ment in which the objective is linear with respect to the
allocation function, our characterization and revenue ex-
pression are more complex in the mixed bidder setting.

1Mechanism based on known prior of bidder’s types and values.



• We then apply the variation method to solve the optimal
allocation function and present an algorithm to compute
the optimal mechanism for a single bidder. We also pro-
vide an analytical description of the optimal mechanism
when the bidder’s value follows uniform distribution;

• Finally, we provide an algorithm to solve the optimal
lookahead auction in the multiple mixed bidders setting.

Additional Related Works (Lv et al. 2023b) takes the
first steps on the truthful auction design for mixed bidders. In
their setting, bidders’ types and values are private but fixed.
Their mechanism can achieve a constant approximation to
the optimal social welfare. Compared to their work, we con-
sider a Bayesian setting where the bidders’ types and val-
ues follow a known distribution independently. The objec-
tive function in this paper is revenue, and we can achieve
optimal.

Another modeling for bidders in an online advertising
platform by (Lv et al. 2023a) is UMs with return-on-
investment (ROI) constraints. The typical UMs are those
with low ROI constraints while VMs with high ones. The
optimal auction for a single bidder with ROI constraints is
characterized, but the ROI constraints are public information
in their setting.

Other related literature includes works designing mech-
anisms for UMs and VMs separately, for which we only
survey some representative ones. For UMs, Myerson did
the most seminal work on auction theory and designed
the optimal mechanism for selling a single item to mul-
tiple bidders whose values follow independent random
distributions (Bayesian setting) (Myerson 1981). His ap-
proach can be extended to a broader scenario called single-
parameter environment2. Other mechanism designs for UMs
include position auctions(Varian 2007; Edelman, Ostrovsky,
and Schwarz 2007; Chawla and Hartline 2013), multi-
dimensional screening(Chawla et al. 2010; Daskalakis,
Deckelbaum, and Tzamos 2015; Hart and Reny 2015), and
approximate mechanisms(Hart and Nisan 2017; Jin et al.
2020). For VMs, most existing literature focuses on the ef-
ficiency of some special auction format (Deng et al. 2022,
2023; Lu, Xu, and Zhang 2023) or designing new mecha-
nisms (Balseiro et al. 2023, 2021).

Preliminaries
We first introduce the auction model with two types of bid-
ders. Next, we present the multi-parameter mechanism set-
tings for the optimal auction design problem and the IR and
IC constraints.

Auction Model
We consider the standard Bayesian single-item auction
model. In this model, one auctioneer, also referred to as the
seller, sells one item to n potential buyers, also known as
bidders. Our model includes two types of bidders: UM and
VM. The type of the i-th bidder, ti ∈ {U, V }, represents

2We provide a brief introduction about the single parameter en-
vironment in full version.

UM and VM, respectively. The private value of the i-th bid-
der is vi. The class of the i-th bidder is the pair of the type
and the value, denoted as θi = (ti, vi). Let v = (vi)i∈[n],
t = (ti)i∈[n], and θ = (θi)i∈[n]. A UM’s utility is the dif-
ference between the allocated value and the payment, while
a VM’s utility is simply the allocated value. Each bidder,
whether UM or VM, seeks to maximize their utility. We as-
sume that the distribution of each bidder’s θi is identical and
known. Each bidder is a UM with probability q and a VM
with probability 1 − q, independently. If a bidder’s type is
UM, her value vi follows the distribution FU , with proba-
bility density function (pdf) fU (·), independently and iden-
tically. If the bidder is a VM, her value follows the distri-
bution FV , with pdf fV (·), independently and identically.
In this paper, we assume FU is regular3, and there is no as-
sumption on FV .

Multi-Parameter Mechanisms

We consider a multi-parameter mechanism, where bidders
submit bids that include both their values and their types.
Let bi = (t̂i, v̂i) represent the bid of the i-th bidder, and
b = (bi)i∈[n] represent the bid profile. After receiving the
bids, the mechanism determines x(b) = (xi(b))i∈[n] and
p(b) = (pi(b))i∈[n], representing the allocation and pay-
ments, respectively. Let ui(b) denote the utility of the i-th
bidder under the bid profile b. According to the definition of
the two types of bidders, we have

ui(b) =

{
xi(b)vi − pi(b) if ti = U,

xi(b) · vi if ti = V .

DenoteM = (x,p), which is the pair of allocation and
payment functions. Since there is only one item to be sold,∑n

i=1 xi(b) ≤ 1,∀b. In this paper, we focus on designing a
mechanism that satisfies the following IR and IC constraints.

(Ex-post) IR Constraints If the i-th bidder bids truthfully,
the payment should not be larger than her value, whatever
the other bidders bid.

∀i, b−i, pi(θi, b−i) ≤ vi · xi(θi, b−i),

where b−i is the bids of all bidders except the i-th bidder.
Note that although the utility of the VMs is not related to
the payments, the IR constraints require their payment to be
less than their value, which prevents us from extracting a
large amount of revenue from them.

(Ex-ante) IC Constraints We consider the Bayesian In-
centive Compatibility (BIC) constraints in our model. That
is,

∀i, b̂, Eθ−i [ui(b̂,θ−i)] ≤ Eθ−i [ui((ti, vi),θ−i)],

where θ−i is the classes of all bidders except the i-th bidder.

3A distributionF is regular if the virtual value function φ(v) =

v − 1−F(v)
f(v)

is monotone increasing where f(·) is the pdf.



Revenue Maximization
The seller aims to maximize the revenue, which is the sum
of payments from all bidders. We denote the revenue by
REV(M) =

∑n
i=1 pi(b). The problem can be viewed as

the following optimization problem

max
x(·),p(·)

Eθ[

n∑
i=1

pi(θ)] (REV OPT)

s.t.
n∑

i=1

xi(θ)≤ 1, ∀θ

x(·),p(·) satisfy IR and IC constraints,
xi(θ), pi(θ)≥ 0, ∀θ.

Characterization of the IC Auctions Structure
In this section, we characterize the Incentive Compatible
(IC) auctions with mixed bidder types. More precisely, given
any fixed interim allocation for UMs that is monotonically
increasing and continuous, we characterize the interim pay-
ments for both bidder types and the interim allocation for
VMs for a revenue-maximizing auction. This characteriza-
tion is more intricate compared to the single-parameter auc-
tions due to the added complexity of two-dimensional pa-
rameters affecting the IC constraints. We note that an IR and
IC single-parameter mechanism that allows bidders to only
bid their values and not their classes cannot achieve any rea-
sonable revenue for mixed bidders, particularly when bid-
ders are more likely to be VMs. (Refer to the full version for
a detailed discussion.)

Denote

xU
i (vi) = Eθ−i

[xi((U, vi),θ−i)],

pUi (vi) = Eθ−i
[pi((U, vi),θ−i)],

as the interim allocation and payment for the i-th bidder re-
spectively if her type is UM and value is vi. Similarly, let

xV
i (vi) = Eθ−i

[xi((V, vi),θ−i)],

pVi (vi) = Eθ−i
[pi((V, vi),θ−i)],

be the interim allocation and payment for a VM with value
vi respectively. Denote vU = sup{supp(FU )}4. We have
the following characterization.
Theorem 1. Given xU

i (·) which is monotonically increasing
and continuous. Denote

gi(vi) =

{
pU
i (vi)

xU
i (vi)

xU
i (vi) > 0;

vi xU
i (vi) = 0,

as the expected payment per unit of UMs with value vi. The
following payment and allocation rules are revenue-optimal
under the IR and IC constraints:

• pUi (vi) = vi · xU
i (vi)−

∫ vi

0

xU
i (u)du;

• xV
i (vi) =


xU
i (g

−1
i (vi)) if 0 ≤ vi ≤ gi(v

U ),

min{
∫ vU

0
xU (u)du

vU−vi
, 1} if gi(vU ) < vi ≤ vU ,

1 if vi > vU ;

4For a distributionF whose pdf is f(·), supp(F) = {v|f(v) >
0}.

• pVi (vi) = vi · xV
i (vi).

This characterization theorem allows us to transform the
optimization (REV OPT) into a simpler optimization prob-
lem solely for the interim allocation for UMs.

The remaining of this section is dedicated to the proof
of this theorem. We start by characterizing the IC payment
rules.

Payment Rules
We follow a similar idea as (Myerson 1981) to first charac-
terize the unique IR and IC payment rule for any given allo-
cation rule. This structural result helps us express the auction
revenue as a function of the allocation rule.

Since the bidders can deviate in two dimensions (types
and value), there are four groups of IC constraints: UM-
UM, VM-VM, UM-VM, and VM-UM, where A-B means
a bidder of type A cannot benefit from bidding type B and a
possibly different value.

UM-UM: We first focus on the constraints that any UM
i cannot benefit from bidding the true type ti = U , but an
untruthful v̂i rather than the true value vi. Formally,

∀v̂, vi · xU
i (v̂)− pUi (v̂) ≤ vi · xU

i (vi)− pUi (vi).

Such constraints are exactly the same as those in the single-
parameter auction setting. Thus, by Myerson’s Lemma we
have:
Lemma 1 (Myerson 1981). For given xU

i (·), the only pay-
ment satisfying the IC constraints for the UMs is:

pUi (vi) = vi · xU
i (vi)−

∫ vi

0

xU
i (u)du.

Moreover, the expected utility of a UM with value vi is:

∀vi, uU
i (vi) = vi · xU

i (vi)− pUi (vi) =

∫ vi

0

xU
i (u)du.

The payment function here is called Myerson’s payment
for UMs. Recall that we define

gi(vi) =
pUi (vi)

xU
i (vi)

= vi −
∫ vi
0

xU
i (u)du

xU
i (vi)

,

as the expected payment per unit of UMs with value vi, then
Myerson’s payment can be expressed as:

pi((U, vi),θ−i) = xi((U, vi),θ−i) · gi(vi).
Payment for VMs. We can also show that the optimal
payment function for VMs must be the first price payment.
That is, the payment of the winner equals to the value she
bids times her allocation. Indeed, it can be easily verified that
for any IR and IC mechanism, increasing pVi (vi) to vix

V
i (vi)

for a VM will not violate the IR and IC constraints. Thus,
a revenue-optimal mechanism should always have the first
price payment for VMs.

Allocation Rules for VMs
Next, we discuss xV

i (·) satisfying the IC constraints for
given xU

i (·). Under Myerson’s and the first price payment
for UMs and VMs respectively derived in the last subsec-
tion, we consider the other three groups of IC constraints:



VM-VM: The interim allocation for the VMs should be
monotone:

∀v̂ ≤ vi, xV
i (v̂) ≤ xV

i (vi).

UM-VM: A UM will not misreport her type as VM with a
higher value, since her utility will be non-positive then. As
for misreporting a lower value, the IC constraints require:

∀v̂ ≤ vi, uU
i (vi) =

∫ vi

0

xU
i (u)du ≥ (vi − v̂) · xV

i (v̂).

VM-UM: A VM would only misreport as a UM with v̂
such that vi ≥ gi(v̂) (IR constraints for VM). Then we have
the IC constraints for such v̂:

∀v̂, s.t. gi(v̂) ≤ v, xU
i (v̂) ≤ xV

i (vi).

From these constraints, we can see that the IC condition for
xV
i is closely related to gi(·). The following lemma charac-

terizes several basic properties of gi(·):
Lemma 2. The gi(·) function has the following properties:
• gi(·) is monotone increasing;
• ∀v1, v2, we have xU

i (v1) = xU
i (v2) if and only if

gi(v1) = gi(v2);
• If xU

i (·) is continuous, then gi(·) is also continuous;
• Given any fixed gi(·), we have

xU
i (v) = C · exp

(∫ v

0

g′i(u)

u− gi(u)
du

)
,

for some constant C.
The last property in Lemma 2 suggests that to optimize

xU
i (·), we can instead focus on optimizing gi(·). The proof

of this lemma can be found in the full version.
When xU

i (·) is given, the following lemma characterizes
a necessary condition of IC xV

i (·).
Lemma 3 (Necessary condition of IC xV

i (·)). For any
given xU

i (·), suppose xV
i (·) satisfies the IC constraints, then

for any vi, v, v, such that gi(v) ≤ vi ≤ gi(v), we have

xU
i (v) ≤ xV

i (vi) ≤ xU
i (v).

Specially, if there exists v∗, such that gi(v
∗) = vi, then

xV
i (vi) = xU

i (v
∗).

Proof: According to the VM-UM IC constraints, we have
xV
i (vi) ≥ xU

i (v), which is the first inequality.
For the second inequality, we have

xV
i (vi) ≤

uU
i (v)

v − vi
(UM-VM IC constraints)

≤ uU
i (v)

v − gi(v)
(vi ≤ gi(v))

=
xU
i (v) · v − pUi (v)

v − pU
i (v)

xU
i (v)

= xU
i (v).

□
With the help of Lemma 3 and mild assumptions on xU

i (·),
we can derive a necessary and sufficient condition of xV

i (·).

Lemma 4 (Necessary and sufficient condition of IC xV
i (·)

for continuous xU
i (·)). When xU

i (·) is continuous, the nec-
essary and sufficient condition for IC xV

i (·) is that:

1. xV
i (·) is monotonically increasing;

2. ∀0 ≤ vi ≤ gi(v
U ), xV

i (vi) = xU
i (g

−1
i (vi));

3. ∀gi(vU ) < vi ≤ vU , xV (vi) ≤
∫ vU

0
xU (u)du

vU−vi
.

Proof: We first show that the allocation is well-defined.
Specifically, by the second property of Lemma 2, we know
that xU

i (g
−1
i (vi)) exists and is unique, even when g−1

i (vi) is
a set of values.

For necessity, xV
i (·) should be monotone increasing

from the VM-VM IC constraints. Condition (2) holds by
Lemma 3 and the continuity of xU

i , and condition (3) holds
due to the UM-VM IC constraints for UM with value vU .

For the sufficiency, the VM-VM and VM-UM constraints
both hold for the monotonicity of xU

i (·), xV
i (·) and gi(·). It

suffices to show that the UM-VM constraints hold. We first
consider the UMs with value 0 ≤ vi ≤ gi(v

U ). They will
not deviate to a VM with a value larger than gi(v

U ). For any
value v̂ ≤ gi(v

U ) we have

(vi − v̂) · xV
i (v̂) =(vi − gi(g

−1
i (v̂))) · xU

i (g
−1
i (v̂))

=vi · xU
i (g

−1
i (v̂))− pUi (g

−1
i (v̂)) ≤ uU

i (vi).

The second equality is because gi(vi) · xU
i (vi) = pUi (vi)

for any vi. The third inequality is from the UM-UM IC con-
straints which can be guaranteed only by Myerson’s pay-
ments.

If vi > gi(v
U ), then for any v̂ ≤ vi and v̂ ∈ [g(vU ), vU ]

we have:

(vi − v̂) · xV (v̂) ≤ (vi − v̂)

∫ vU

0
xU (u)du

vU − v̂

≤ vi − g(vU )

vU − g(vU )
·
∫ vU

0

xU (u)du

= vi · xU (vU )− pU (vU )

≤ uU (vi).

The second inequality holds as v̂ ≥ g(vU ), and the last
inequality holds as the UM-UM IC constraints which is
guaranteed by the Myerson’s payment. □

Lemma 4 reveals an important connection between UM
and VM in an IR and IC auction: the interim allocation and
payment must be identical for a UM with value vi and a VM
with value gi(vi).

With Lemma 4 in hand, the proof of the Theorem 1 is
straightforward. When xU

i (·) is given, the revenue is mono-
tone increasing with respect to the value of xV

i (·). Therefore,
to maximize the revenue as stated in Theorem 1, the third
property of Lemma 4 should be utilized to take the maxi-
mum.



Optimal Auction Design for a Single Bidder
We now solve the revenue-maximization problem for a sin-
gle bidder. This can be achieved by first expressing the rev-
enue objective in terms of xU

i (·), then applying a variational
method to optimize it. We also provide a numerical algo-
rithm to solve the ordinary differential equation (ODE) aris-
ing from the variational method, and demonstrate that our
theory aligns with the results in the literature in two extreme
scenarios. Additionally, we derive the optimal mechanism in
closed form for the case where the value distributions follow
a uniform distribution, which is detailed in the full version.

Problem Reformulation
We begin by expressing the revenue objective with respect
to xU

i (·) in the multi-bidder case:

REV(M) = Eθ[

n∑
i=1

pi(θ)]

=

n∑
i=1

∫ +∞

0

q · pUi (v)f
U (v) + (1− q) · pVi (v)fV (v)dv

=

n∑
i=1

∫ +∞

0

q · xU
i (v)φ

U (v)fU (v)

+ (1− q) · xV
i (v) · v · fV (v)dv,

where the second equality is from the revenue equivalence
and pVi (v) = xV

i (v) · v. We define

hU
i (v) = q · φU (v)fU (v), hV

i (v) = (1− q) · v · fV (v).

Then the revenue can be expressed as
n∑

i=1

∫ +∞

0

(
xU
i (v)h

U
i (v) + xV

i (v)h
V
i (v)

)
dv.

Now we turn to the single-bidder case. Since there is only
one bidder, we omit the subscript i. Note that to maximize
the revenue, we should always allocate the item to the UM
when she has the largest value in the support. Denote v =
infv{xU (v) = 1}. The optimal xV (·) in Theorem 1 can then
be expressed as:

xV (v) =

{
xU (g−1(v)) if 0 ≤ v ≤ g(v),
1 if v > g(v).

Thus, the second term satisfies∫ +∞

0

xV (v)hV (v)dv

=

∫ g(v)

0

xU (g−1(v))hV (v)dv +

∫ +∞

g(v)

hV (v)dv

=

∫ v

0

xU (v)g′(v)hV (g(v))dv +

∫ +∞

g(v)

hV (v)dv,

where the last equality holds as we substitute v by g−1(v)
in the first integral. Thus, the revenue can be expressed as

REV(M) =

∫ v

0

(
xU (v)hU (v) + xU (v)g′(v)hV (g(v))

)
dv

+

∫ +∞

v

hU (v)dv +

∫ +∞

g(v)

hV (v)dv. (1)

Optimizing xU (·)
Applying Theorem 1 to Eqn. (1) and denote y(v) =∫ v

0
xU (u)du, we have xU (v) = y′(v) and g(v) = v− y(v)

y′(v) ,

which means xU ′
(v) = y′′(v) and g′(v) = y(v)y′′(v)

(y′(v)2) . The
revenue becomes

REV(M) =

∫ v

0

(
y′ · hU (v) +

y · y′′

y′ hV

(
v − y

y′

))
dv

+

∫ +∞

v

hU (v)dv +

∫ +∞

g(v)

hV (v)dv. (2)

If we fix y(v) and let y′(v) = xU (v) = 1 to be the initial
value, then g(v) = v − y(v) is also fixed. This makes the
last two integrals in the revenue as constants, and our target
is now to maximize the first integral. Define

f(v, y, y′, y′′) =
y · y′′

y′
hV (v − y

y′
) + y′ · hU (v).

The optimization problem becomes

max

∫ v

0

f(v, y, y′, y′′)dv (3)

s.t. y′(v) is monotone increasing,
0≤ y′(v) ≤ 1 ∀v,
y′(0) = 0, y′(v) = 1.

Applying the Euler-Lagrange equation

∂f

∂y
− d

dv

∂f

∂y′
+

d2

dv2
∂f

∂y′′
= 0, (4)

we have:
∂f

∂y
=

y′′

y′

(
hV

(
v − y

y′

)
− y

y′ · h
V ′
(
v − y

y′

))
,

∂f

∂y′

=hU (v)− y · y′′

y′

(
hV

(
v − y

y′

)
− y

y′ · h
V ′
(
v − y

y′

))
,

∂f

∂y′′ =
y

y′ · h
V

(
v − y

y′

)
.

Substituting them into Eqn. (4) leads to

∀0 ≤ v ≤ v,
y′′

y′
· hV

(
v − y

y′

)
= hU ′

(v) . (5)

This is a second-order ODE. With the initial value provided
in the optimization (3), the ODE has a unique solution. The
parameter v is yet to be determined and is associated with the
revenue. By solving ODE (5), we can determine y(·). Sub-
sequently, substituting this into Eqn. (2) gives us REV(M)
as a function of v. Finally, we can search all possible values
of v to find the one with the optimal revenue.

While a general second-order ODE may be difficult to
solve, in the following we present a numerical algorithm 1
to obtain the optimal auction. We first discretize the integral
interval with gap ε. If y(v) and y′(v) are known, we invoke
RK(v) = (y(v + ε), y′(v + ε), y′′(v + ε)) as an extrapo-
lation method oracle for the solution of ODE (5). It can be



Algorithm 1: Find the optimal allocation for a single bidder

vU ← sup{supp(FU )}, vV ← sup{supp(FV )}
for all possible parameter C do

REV(C)← 0, y(ε)← ε · C, y′(ε)← C
for j = 2ε, 3ε, . . . , vU do

(y(j), y′(j), y′′(j))←RK(j − ε)
REV(C)+ = ε ·∆REV(j)
if y′(j) > 1 then

break
end if

end for
REV(C)+ =

∫ vU

j
hU (v)dv +

∫ vV

j− y(j)

y′(j)
hV (v)dv

end for
return the C∗ with the highest REV(C)

implemented by any numerical ODE algorithm, such as the
Runge-Kutta methods. We define

∆REV(v) = y′(v) · hU (v) +
y(v)y′′(v)

y′(v)
hV

(
v − y(v)

y′(v)

)
,

which is used to compute the revenue in our numerical algo-
rithm. Different from the argument above, we choose y′(ε)
as the parameter to be optimized for convenience.

Two Extreme Scenarios
We validate our solution by solving the optimal auction in
two extreme cases, q = 1 and q = 0, meaning the bidder is
of type UM or VM with probability 1. We will demonstrate
that these solutions precisely correspond to the optimal auc-
tion formats established in the literature.

First, rather than solving the ODE (5) directly, we can uti-
lize the fact that y′′/y′ = g′(v)/(v − g(v)) as derived by
definition, and transform ODE (5) into:

∀0 ≤ v ≤ v,
g′(v)hV (g(v))

v − g(v)
= hU ′

(v). (6)

This is a first-order ODE. Once g(v) is solved according to
ODE (6), we can obtain xU (·) by the last property of Lemma
2:

xU (v) = C(v) · exp
(∫ v

0

g′(u)

u− g(u)
du

)
, (7)

where C(v) is a constant determined by the initial condition
v. By inserting this into Eqn. (2) we can derive REV(M) as
a function of v. This allows us to search all possible v values
to identify the v that maximizes our revenue.

When q = 0, we have hU (v) ≡ 0, hU ′
= 0. Thus,

g′(v) = 0 and g(v) ≡ 0 from ODE (6). By substituting
it into Eqn. (7) we have xU (v) = xV (v) ≡ 1, which is the
first price auction.

When q = 1, we have hV (v) ≡ 0. According to ODE (6),
g(v) = v,∀0 ≤ v ≤ v, which leads to

xU (v) =

{
0 0 ≤ v < v,
1 v ≥ v.

This is a posted price mechanism which is exactly Myer-
son’s auction for a single bidder (after searching for the
revenue-maximizing v).

Optimal Auction Design for Multiple Bidders
We now turn to the general multi-bidder case. In this sec-
tion, we first show the necessary and sufficient conditions
for the feasibility of an interim allocation in the mixed bid-
der setting. Nonetheless, these conditions are too intricate
to optimize xU

i (·). We then introduce the concept of the
lookahead auction for mixed bidders, simplifying the char-
acterization of interim feasibility. To determine the revenue-
optimal lookahead auction, we apply the variational method
with interim feasibility constraints to Equation (1).

Interim Feasibility and Lookahead Auctions
For the single-bidder scenario, the constraints on xU

i (·) are
simply 0 ≤ xU

i (v) ≤ 1 for any v. In the multi-bidder case,
we must also consider the implementability of an interim
allocation. We first provide the following necessary and suf-
ficient conditions for interim feasibility which is known as
Border’s theorem :

Proposition 1 ((Border 1991)). Denote the set of all
possible bidder’s classes as T . A set of interim alloca-
tion {xU

i (·), xV
i (·)}i∈[n] is implementable if and only if

∀S1, S2, . . . , Sn ⊆ T we have:

n∑
i=1

E[xti
i (vi)|θi ∈ Si] · Pr(θi ∈ Si)

≤ Pr
θ
(∃i ∈ [n] : θi ∈ Si).

The constraints in Border’s theorem are overly complex
for optimizing xU

i (·) using the variational approach. As
noted in Lemma 4, the interim allocations and payments are
identical for a UM with value v and a VM with value gi(v).
This insight leads us to introduce the concept of the looka-
head auction in our mixed bidder setting as follows:

Definition 1 (Lookahead Auction). For bidder i with value
vi, define the score as gi(vi) if this bidder is a UM, and vi if
a VM. A lookahead auction for mixed bidders satisfies:

• Symmetry: ∀i, j and t ∈ U, V , xt
i(v) ≡ xt

j(v);
• Allocation: If the item is allocated, it goes to the bidder

with the highest score.

Since we only consider symmetric mechanisms, we omit
the subscript i. The following lemma characterizes the in-
terim feasibility of xU (·) for a lookahead auction.

Lemma 5 (Interim feasibility inequality). An interim al-
location (xU (·), xV (·)) of a lookahead auction is imple-
mentable if and only if for all θi = (t, v), we have xt(v) ≤
Pr [i has the highest score|θi] .

The proof is straightforward and we put it in the full ver-
sion.

Characterization of the Optimal Auction
For a single bidder, selling to a UM with positive virtual
value is profitable without reducing revenue from VMs.
Thus, xU (v) can reach 1 for sufficiently large v. However,
in a lookahead auction, even a UM with value vU may lose
to a VM with a value exceeding g(vU ). Lemma 5 implies



that the optimal implementable allocation function for VM
when v ∈ [g(vU ), vU ] is:

xV ∗
(v) = min

(q + (1− q) · FV (v)
)n−1

,

∫ vU

0
xU (u)du

vU − v

 .

(8)
For v ∈ [vU , vV ], we set xV (v) to maximize revenue while

satisfying the interim feasibility inequality. Let y(v) =∫ v

0
xU (u)du. The revenue is then:

REV(M) = n ·

(∫ vU

0

y′ · hU (v) +
y · y′′

y′ hV

(
v − y

y′

)
dv

+

∫ vV

g(vU )

xV (v) · hV (v)dv

)
.

Treating y(vU ) and y′(vU ) as initial values, g(vU ) becomes
fixed, making the second integral constant. We focus on op-
timizing the first integral. Using the definition from the pre-
vious section, the optimization problem becomes:

max

∫ vU

0

f(v, y, y′, y′′)dv (9)

s.t. y′(v)is monotone increasing,
y′(v)≤ (q · FU (vi) + (1− q) · FV (v − y

y′ ))
n−1 ∀v,

y′(v)≥ 0 ∀v,
y′(0)= 0.

By complementary slackness, the Euler-Lagrange equation
(4) is violated under the optimal solution only when the in-
terim feasibility constraint binds. Let y1(v) be the solution
to ODE (4), and y2(v) be the solution to the ODE derived
from the interim feasibility constraints:

y′(v) = (q · FU (v) + (1− q) · FV (v − y

y′
))n−1. (10)

The optimal y(v) is then determined by the function with the
smaller derivative between y1(v) and y2(v).

The Euler-Lagrange equation (5) is a second-order ODE,
but problem (9) only provides one initial value, y′(0) = 0.
This introduces a parameter C that affects revenue. For a
fixed C, we can determine the optimal y(·) and correspond-
ing REV(M). The optimal auction can then be found by
searching all possible C values and selecting the one that
maximizes revenue.

In summary, Algorithm 2 numerically solves the revenue-
optimal lookahead auction for multiple bidders. We dis-
cretize the integral interval with step size ε. Given y(v) and
y′(v), we use RK1(v) = (y(v + ε), y′(v + ε), y′′(v + ε))
as an extrapolation oracle for ODE (5)’s solution. Simi-
larly, RK2(v) serves as an oracle for ODE (10)’s solution.
∆REV(v) is defined in the previous section with y′(ε) as
the parameter to be determined.

Figure 1 illustrates the optimal allocation for both bidder
types when n = 2, q = 0.4, and both FU and FV follow
uniform distributions on [0, 1]. The green line represents the
interim feasibility constraints, showing the probability of a
score v being highest among all bidders. In the first phase,

Algorithm 2: Search optimal allocation for multiple bidders

vU ← sup{supp(FU )}, vV ← sup{supp(FV )}
for all possible parameter C do

REV(C)← 0, y(ε)← ε · C, y′(ε)← C
for j = 2ε, 3ε, . . . , vU do

(y1(j), y
′
1(j), y

′′
1 (j))← RK1(j − ε)

(y2(j), y
′
2(j), y

′′
2 (j))← RK2(j − ε)

k ← argmini{y′i(j)|i ∈ {1, 2}}
(y(j), y′(j), y′′(j))← (yk(j), y

′
k(j), y

′′
k (j))

REV(C)+ = ∆REV(j)
end for
if vV ≥ vU − y(vU )

y′(vU )
then

REV(C)+ =
∫ vV

vU− y(vU )

y′(vU )

xV ∗
(v) · hV (v)dv

end if
end for
return The C∗ with the highest REV(C)

Figure 1: Optimal allocation when n = 2, q = 0.4, the value
of UMs and VMs both follow uniform distribution on [0, 1]

the Euler-Lagrange equation binds for both bidder types,
with the yellow line below the green line, indicating pos-
sible non-allocation even with the highest score. The second
phase begins when these lines coincide, binding the interim
feasibility inequality and ensuring allocation for the high-
est score in this range. For VMs, the third phase’s optimal
allocation is determined by Eqn. (8).

Future Directions
This work investigates optimal auction design for mixed bid-
ders. We characterize allocation and payment rules under IR
and IC constraints and design optimal auctions for single
bidders and optimal lookahead auctions for multiple bidders.

It remains unknown whether the optimal auction in the
multi-bidder case is a lookahead auction. Given their ease
of implementation and proven optimality for UMs with iid
values, we conjecture that it is also optimal for the mixed
bidders with iid classes.



Another future direction is applying the ‘simple versus
optimal’ paradigm to our settings. While our derived optimal
mechanism is complex and randomized, simpler alternatives
like second-price auctions with reserves may provide con-
stant approximations to the optimal for mixed-bidder auc-
tions.
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A brief introduction to the single parameter
environment

Suppose there are n bidders which are utility maximizers
(UM). Each bidder has a private value vi and they are re-
quired to bid their value. After collecting the bids b =
(bi)i∈[n], the mechanism determine the allocation x(b) =
(xi)i∈[n] and the payment p(b)i∈[n]. Suppose the i-th bid-
der’s value follows Fi whose pdf is fi(·) and we assume it
is regular.

Let v−i be all bidders’ value except the i-th one. Denote
xi(vi) = Ev−i

[xi(vi,v−i)] and pi(vi) = Ev−i
[pi(vi,v−i)]

as the interim allocation and payment for the i-th bidder.
The Myerson’s lemma characterizes the unique interim pay-
ment function such that the IR and IC constraints when fix-
ing xi(·).
Lemma 6. Suppose the expected utility when bidding 0 is
also 0. Then (xi(·), pi(·)) satisfies the IR and IC constraints
if and only if:

• xi(·) is monotone increasing.
• ∀v, pi(v) = v · xi(v)−

∫ v

0
xi(u)du.

Myerson’s lemma is important for several reasons:
• It indicates that every monotone allocation can be IR and

IC with a corresponding payment function.
• We can express our objective function only with xi(·)

rather than (xi(·), pi(·)). It will be more convenient to
further optimize.

• It does not assume the sum of all bidders’ allocations can-
not be larger than 1. Thus, it also works for position auc-
tions or digital goods auctions.

Define the virtual value of the i-th bidder as φi(v) = v −
1−Fi(v)
fi(v)

. The following lemma shows that using Myerson’s
payment, the expected revenue is equal to the expected vir-
tual value:
Lemma 7 (Revenue equivalence). Using the payment func-
tion in lemma 6, we have

E[pi(v)] = E[xi(v) · φ(v)].

According to lemma 7, the virtual value can be regarded
as ‘revenue that can be extracted’. The following theorem is
derived from the two lemmas above which characterizes the
optimal single-item auction:
Theorem 2 (Myerson’s auction (Myerson 1981)). The op-
timal single-item auction for bidders with regular value dis-
tributions is to allocate the item to the bidder with the high-
est positive virtual value.

This theorem can be extended to the non-regular case with
an ‘ironing’ process, which we omit here. As corollaries of
theorem 2, for bidders with i.i.d. regular distributions or a
single bidder, Myerson’s auction degenerates to simple auc-
tion formats as follows:
Corollary 1. For bidders with i.i.d. regular value distribu-
tions, the optimal single-item auction is a second-price auc-
tion with reserve. That is, set a reserve price p such that
φ(p) = 0, then

• If at least two bidders’ values are larger than p, then the
item is allocated to the bidder with the highest value. The
payment is the value of the second-highest bidder.

• If only one bidder’s value is larger than p, then allocate
the item to her. The payment is p.

• If no one has value larger than p, do not allocate the item.
Corollary 2. For a single bidder, the optimal single-item
auction is a posted price auction. That is, set a posted price
p such that φ(p) = 0. If the bidder’s value is larger than p,
then allocate the item to her, the payment is p. Otherwise do
not allocate the item.

Although Myerson’s approach is well-developed and has
a wide range of applications, it cannot be applied in our
multi-parameter setting. The main difficulty is that the IC
constraints cannot be guaranteed only by a delicate payment
function but also by the allocation function for both types
of bidders. Moreover, the coupling of the allocation leads to
no succinct expression of the revenue as in lemma 7. The
optimal allocation is not a dichotomy like Myerson’s auc-
tion, that is the reason why we use the variational method to
optimize it.

Failure of IR and IC single-parameter
mechanism

A single-parameter mechanism here means that the bidders
only bid their value rather than their classes. We show such
mechanisms cannot obtain a reasonable revenue for mixed
bidders especially when the bidders are more likely VMs.

For the single parameter setting, the optimal IR and
IC auction design follows directly from Myerson’s work
(Myerson 1981). Specifically, for the i-th bidder, now her
value follows a value distribution denoted by FT , whose
pdf is fT , as the mixture distribution over FU when be-
ing a UM and FV when being a VM. Denote xi(v) =
Ev−i

[xi(v,v−i)] and pi(v) = Ev−i
[pi(v,v−i)] as the in-

terim allocation and payment for the i-th bidder respectively.
To satisfy the IC constraints for the case the i-th bidder is a
UM, it requires:

∀b̂, vi, vi · xi(b)− pi(b) ≤ vi · xi(vi)− pi(vi).

By the Myerson’s lemma, for given allocation xi(·), there is
unique payment pi(·) satisfying IC constraints:
Lemma 8 (Myerson’s lemma (Myerson 1981)). For given
allocation rule xi(·), the only payment rule satisfying the IC
constraints is:

∀vi, pi(vi) = vi · xi(vi)−
∫ vi

0

xi(u)du.

This means the obtained revenue of an IR and IC mech-
anism does not depend on whether a bidder is UM or VM.
Following the same derivation by (Myerson 1981), we have
revenue equivalence. Formally, denote the virtual value by

φT (v) = v − 1−FT (v)

fT (v)
,

then

Ev[

n∑
i=1

pi(v)] = Ev[

n∑
i=1

xi(v) · φT (vi)].



Thus, the revenue maximized auction is to allocate the item
to the bidder with the highest positive virtual value. The cor-
responding payment is

pi(v) =

{
pi(vi)
xi(vi)

= vi −
∫ vi
0 xi(u)du
xi(vi)

if i wins,
0 otherwise.

Now we provide an example showing a single-parameter
mechanism cannot lead to a reasonable revenue. Consider
there is only one bidder who is a VM with probability 1.
Her value follows the equal-revenue distribution FV

ER, that
is:

FV
ER(v) =

{
1− 1

v for 1 ≤ v < c,
1 for v ≥ c.

where c > 1 is a parameter to be determined. Accord-
ing to corollary 2, the optimal auction format should be
a posted-price auction However, the basic property of the
equal-revenue distribution is that, if you provide a posted
price between 1 and c to a single buyer, the revenue will
always be v · (1 − FV (v)) = 1. Thus, the revenue of the
optimal IR and IC auction is 1.

To be compared, consider the following multi-parameter
mechanism: always selling the item to the bidder if her bid
b satisfies 1 ≤ b ≤ c, and the corresponding payment
p(b) = 1 if the type she bids is UM, while p(b) = b if
the type she bids is VM. It is straightforward that this mech-
anism satisfies IR constraints. For the case that the bidder is
a VM, deviating to bid her type as UM or bid other value
does not increase the probability of winning the item, so as
her utility. For the case that the bidder is a UM, deviating to
bid her type as VM or bid other value does not decrease her
payment, so as her utility. Thus, this mechanism also satis-
fies IC constraints. The expected revenue of this mechanism
is

EV∼FV
ER

[V ] = 1 + ln c,

which can be arbitrarily larger than 1 for c→ +∞.

Proof of Lemma 2
Property 1: gi(·) is monotone increasing because

d

dv
gi(v) =

d

dv
(v −

∫ v

0
xU
i (u)du

xU
i (v)

)

=

∫ v

0
xU
i (u)du · xU

i
′
(v)

(xU
i (v))

2
≥ 0. (11)

Property 2: If xU
i (v1) = xU

i (v2), then

gi(v1) = v1 −
∫ v1
0

xU
i (u)du

xU
i (v1)

= v1 + (v2 − v1)−
∫ v1
0

xU
i (u)du+

∫ v2

v1
xU
i (u)du

xU
i (v2)

= gi(v2).

On the other hand, if gi(v1) = gi(v2) but xU
i (v1) < xU

i (v2),
we have:

v2 − v1 =

∫ v2
0

xU
i (u)du

xU
i (v2)

−
∫ v1
0

xU
i (u)du

xU
i (v1)

=

∫ v1

0

xU
i (v)du · (

1

xU
i (v2)

− 1

xU
i (v1)

) +

∫ v2
v1

xU
i (u)du

xU
i (v2)

< 0 + (v2 − v1),

which is a contradiction. The first equality holds as gi(v1) =
gi(v2) and the last inequality holds as xU

i (v1) < xU
i (v2) and

the monotonicity of xU
i (·).

Property 3: It is straightforward since
∫ v

0
xU
i (u)du is con-

tinuous w.r.t. v.

Property 4: We have:

ln(xU
i (v))

′ =
g′i(v)

v − gi(v)
,

which leads to the property.

Case study: Uniform distribution
We provide the optimal mechanism in closed form when
the distributions of UM and VM are both uniform distribu-
tions. Suppose the support of the distributions are [0, vU ] and
[0, vV ] for UM and VM respectively. Then

hU (v) = q · φU (v)fU (v) = q(
2v

vU
− 1),

hU ′
(v) =

2q

vU
, hV (v) = (1− q) · v · fV (v) =

1− q

vV
· v.

Substituting them into ODE (6) and denote α = 2qvV

(1−q)vU as
a constant, we have

g′(v) · v
v − g(v)

= α, (12)

which is homogeneous. Let z(v) = g(v)
v , then

z

α− α · z − z2
dz =

1

v
dv.

By taking integral on both sides, we have

v · (ϕ1 − z)
1
2−
√

α
α+4 · (z − ϕ2)

1
2+
√

α
α+4 = D, (13)

where D is a constant, and

ϕ1 =
−α+

√
α(α+ 4)

2
, ϕ2 =

−α−
√
α(α+ 4)

2
,

which are the two roots of equation α− α · z − z2 = 0.
Since ϕ2 ≤ z ≤ ϕ1, we have

LHS of Eqn. (13) ≤ v · (ϕ1 − ϕ2).

Let x → 0, the LHS of Eqn. (13) also → 0. Thus, the
parameter D must be 0. Since ϕ2 < 0 < ϕ1, we have
z(v) = ϕ1, g(v) = ϕ1 · v. Substituting into Eqn. (7), we
have

xU (v) =
(v
v

)α+
√

α(α+4)

2

.



Let ϕ =
α+
√

α(α+4)

2 and take the derivative of the RHS of
Eqn. (2) with respect to v, we have

d

dv
REV(M)

=

∫ v

0

(
d

dv

(v
v

)ϕ)
(hU (v) + g′(v)hV (g(v)))dv

=− ϕ · v−ϕ−1 ·
∫ v

0

((
2q

vU
+

(1− q)ϕ2
1

vV

)
vϕ+1 − q · vϕ

)
dv

=− ϕ · v−ϕ−1 ·

(
2q
vU +

(1−q)ϕ2
1

vV

ϕ+ 2
· vϕ+2 − q

ϕ+ 1
· vϕ+1

)∣∣∣∣v
v=0

=− ϕ ·

(
2q
vU +

(1−q)ϕ2
1

vV

ϕ+ 2
· v − q

ϕ+ 1

)
.

Let ϕ =
α+
√

α(α+4)

2 and take the derivative of the RHS of
Eqn. (2) with respect to vU , we have

d

dvU
REV(M) = −ϕ ·

(
2q
vU +

(1−q)ϕ2
1

vV

ϕ+ 2
· vU − q

ϕ+ 1

)
,

which is a linear function with respect to v. Let
d
dvREV(M) = 0, we have the optimal v is that:

v =
q(ϕ+ 2)

(ϕ+ 1)
(

2q
vU +

(1−q)ϕ2
1

vV

) =
vU

2
.

To sum up, we derive the optimal mechanism for a single
bidder with value following uniform distributions:

xU (v) =

{
( 2v
vU )ϕ 0 < v ≤ vU

2
,

1 v > vU

2
.

xV (v) =

{
( 2v
ϕ1·vU )ϕ 0 < v ≤ ϕ1·vU

2
,

1 v > ϕ1·vU

2
.

pU (v) =

{
ϕ1 · v · ( 2v

vU )ϕ 0 < v ≤ vU

2
,

ϕ1v
U

2
v > vU

2
.

pV (v) =

{
v · ( 2v

ϕ1·vU )ϕ 0 < v ≤ ϕ1·vU

2
,

v v > ϕ1·vU

2
.

where α = 2qvU

(1−q)vU , ϕ1 =
−α+
√

α(α+4)

2 , ϕ =
α+
√

α(α+4)

2

are constants. This mechanism can be implemented by the
following process: when the bidder bids θ = (t, v), we allo-
cate the item to her with probability xt(v). The payment is
pt(v)
xt(v) if she is allocated, otherwise the payment is 0.

Remark 1. The Myerson auction for a single UM is to
allocate the item to the bidder if and only if her value is
larger than v, such that the virtual value φU (v) = 0. If
the bidder’s value follows a uniform distribution on [0, vU ],
φU (v) = 2v − vU ,∀v. Thus v = vU

2 which is the v in our
mechanism. It can be observed that even when q < 1, the
optimal mechanism allocates to UM with a positive virtual
value with probability 1. If the UM’s virtual value is neg-
ative, then the probability that she is allocated is strictly
smaller than 1.

(a) p = 0.5 (b) p = 0.1

The following figure illustrates the optimal allocation for
both types when FU and FV are uniform distributions over
[0, 1], with q = 0.5 and q = 0.1, respectively.

Proof of Lemma 5
Proof: Necessity is obvious; we prove sufficiency. An
interim allocation satisfying the condition can be im-
plemented as follows: After collecting all bids, identify
the highest-scoring bidder i. Allocate the item to i with
probability xt(v)/Pr[i has the highest score | θ]. □


