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Abstract—Understanding the data value for energy-
storage control is critical. The performance of the control
policy is highly related to the quality of demand infor-
mation. An accurate prediction about future demand can
better the performance of energy storage control. Thus, the
storage control asks for sufficient data-sample collection
for qualified prediction. However, the lack of a theory
to quantify the data sufficiency for the energy-storage
control problem. Meanwhile, demand data samples include
privacy information while the storage managers have to
procure the data from data owners. Thus, it is necessary
to determine the relationship between the data size and
the storage-control performance. In addition, a growing
number of studies have proposed many storage-control
policies. However, we are unknown how to theoretically
verify their data-use efficiency. Here, we develop the sample
complexity theory of storage-control problem, which enables
us to theoretically measure the data-use efficiency of the
control strategy and assess the data value. We proposed
the sample-based dynamic programming (SDP) algorithm
that is both cost-minimization and data-use efficient. Based
on the SDP and the sample complexity theory, we manifest
the trade-off between data size, computational load, and
storage-control performances. Finally, we used real-world
data to conduct numerical experiments to validate the
effectiveness of the proposed method.

Index Terms—Storage Control, Sample Complexity, Dy-
namic Pricing, Threshold Policy.

I. INTRODUCTION

Energy storage is valuable for managing the uncer-
tainty and volatility in future power grid operations.
While the decarbonization progress of the power grid
is associated with the enlargement of the system un-
certainty and volatility, the studies on energy storage
have sufficiently discussed the storage control strategies
for mitigating the uncertainty due to new electricity
technologies, such as wind power plants [1], [2], [3], [4],
rooftop solar panels [5], [6], [7], distribution systems [8],
[9], [10], [11], demand response markets [12], electric
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vehicles [13], [14], and emission reduction [15]. Many
studies also addressed the strategies of arbitrage by
storage in the markets associated with the time-of-use
(ToU) rate or dynamic price. The strategies of shifting
demand from peak period to off-peak period have been
comprehensively examined during the last decades.

Data plays a vital role during energy storage control.
However, there lacks a systematic way of discussing
the value of data. While the energy storage is operated
in a multi-stage and uncertain environment, the storage
control strategy has to consider the future forecasts,
which provide distributional information about uncertain
factors, such as the demand level and renewable energy
generation [5], [7], [16]. The predictions highly rely
on historical data. However, those pieces of data either
raise privacy concerns or needs to be procured from
the data dealers. Therefore, it is necessary to understand
how much data is necessary to guarantee energy-storage
control performance. Further, we notice that the literature
clues have shown that the estimation model and con-
trol algorithm will influence the performance of energy
storage control given the same distribution information.
Therefore, it is critical to verify the data-use efficiency
of the pair of estimation models and control algorithm
effectively before assessing the value of data. However,
there lacks a theory enabling the systematic methods to
verify the data-use efficiency of the control algorithm and
assess the value of data.

In this research, we develop the sample complexity
theory for the energy storage control problem to verify
the data-use efficiency of the control algorithm and assess
the value of data. Currently, the sample complexity
theory has been developed to analyze the relationship
between the data size and the performance of machine
learning [17], [18], [19]. To our best knowledge, there
still lacks a sample complexity theory of multi-stage
dynamic and stochastic control problems.

We use the demand data as an example to develop the
sample complexity theory for the energy-storage control
problem. Many storage control studies focus on using
storage to manage demands. However, the demand data
include the consumer’s privacy. The more data collected,
the more pieces of privacy exposes to the risk of leakage.
Therefore, verifying the data size of demand samples and
energy storage performance is critical.

To discuss the value of data, we develop a sample-
based energy storage approach that efficiently uses the



Method Input Guarantee

DP-based Algorithm Exact Distribution Optimal

Online Algorithm None Competitive Ratio

Sample-base DP (SDP) Samples Sample Complexity

TABLE I: The difference between SDP and previous
algorithms

data. The current studies on energy-storage control ei-
ther assume the demand distribution is fully known or
consider the online control problem when the distri-
bution information is absent. However, both of these
two streams partially reflect real-world conditions. The
storage operators in the real world neither fully know
the distribution of the demand nor have the relevant
information. Instead, the operators have historical records
that are samples of the demand. Hence, it is necessary
to consider the optimal control strategy according to
the sample rather than the distribution. The samples
only record partial information about the distribution.
Thus, the information loss must cause the storage-control
strategy according to samples to be worse than that in
the scenario when the distribution is fully known. It is
necessary to calibrate the regret due to the information
loss. Simultaneously, it also deserves a discussion about
whether the optimal charging strategy according to the
sample is still threshold based.

To our best knowledge, this is the first study intro-
ducing the sample complexity theory into the energy-
storage control. We first examine and analyze the optimal
strategy of storage control according to the sample. Sub-
sequently, we develop a theoretical approach to clarify
the mechanism by which the information gap between
samples and distribution causes the regret of the storage
control. We also propose a method to clarify the calibra-
tion of the regret associated with the given data size. The
results manifest the trade-off between the data demand
and computational load during the storage control: the
more samples, the less the computing load required for
accurate storage control.

The remainder of this paper is organized as follows:
Related studies are summarized in Section II. In Sec-
tion III, the storage control problem is first presented
and the double-threshold form of the optimal control
policy, which acts as the base for sample complexity
is proven. Subsequently, we state the specific process of
the proposed sample-based dynamic programming (SDP)
algorithm. Finally, we measure the discretization loss on
the strategy set and demand distribution and introduce
the sample complexity bound. Section V evaluates the
performance of the proposed methods using real-world
data. The conclusions of this study are presented in

Section VI.

II. RELATED WORK

A. Storage Control

Presently, numerous studies have been conducted aim-
ing at minimizing user costs using storage systems [20],
[21], [22], [23], [24], [25]. Many techniques have been
employed in previous studies to solve the optimal policy,
such as dynamic programming, reinforcement learning,
optimization methods, greedy algorithms, and online
algorithms.

Present studies on storage control can be divided into
two groups according to their assumptions on demand
information known by the storage operators. The first
stream of the literature assumes that the storage operators
know the distributions of the demands. The current
studies have addressed the optimal strategies of storage
control according to the time-varying price signal. For
instance, Van de ven et al. proposed the optimal control
policy where the demands follow known Markovian
processes and proved the threshold structure of the policy
[26]. Oudalov et al. presented an optimal operation strat-
egy based on DP to maximize the customer’s economic
benefit [27]. Wang et al. proposed an efficient arbitrage
policy and studied the optimal sizing problem based on
dynamic programming [16]. Wu et al. used one-shot load
decomposition to solve the optimal control policy in the
setting of dynamic pricing and fixed demand [28].

The second stream of the literature assumes that
the storage operators do not know the distribution of
the demands and consider the robust control problem
of storage charging. The objective function for such
problems is usually of a max-min form, where max is
taken over the action space and min is taken over all
possible demands, which can be regarded as the action
space of an adversary. For example, Qin et al. designed
an online modified greedy algorithm for storage control
when the demand is uncertain [29]. Chau et al. designed
an online algorithm to minimize cost with a competitive
ratio guarantee [30]. Some studies consider the setting
of online convex optimization with switching cost [31],
[32]. In this setting, the metric is often the regret with
the optimal offline algorithm in the worst case.

Numerous studies have solved the optimal control
policy based on reinforcement learning algorithms such
as Q-learning and the Markov decision process. Bui et
al. considered the load and renewable energy uncertainty
and designed a double deep Q-learning algorithm to solve
the optimal operation strategy in community battery
energy storage systems [33]. Henri et al. introduced a
reinforcement learning-based machine learning algorithm
to schedule the operations of energy storage systems
[34]. Hu et al. used a Markov decision process to model
battery operations considering battery aging [35].



Other techniques have been considered as well. For
example, Xu et al. proposed a linear time constant space
control algorithm and associated the optimal control
policy with the Lagrangian multiplier [36]. Hashmi et
al. developed a quadratic time algorithm and observed
that it is sufficient to consider prices in a sub-horizon to
determine the optimal action under net-metering policies
[37].

B. Sample Complexity

Sample complexity is significant in theoretical ma-
chine learning [17], [18], [19], [38]. It represents the
number of samples required to train a nearly optimal
algorithm with high probability. Sample complexity is
a theory discussing the following questions in control:
1. How can a good control policy be solved according
to samples? 2. What is the theoretical guarantee of the
control policy? As shown, with positive probability, the
data may be considerably different from those of the
true distribution although the data are sampled from the
distribution. The controller cannot solve an even nearly
optimal control policy with such samples. Hence the
theoretical guarantee we use is sample complexity; that
is, how many samples are required to obtain a nearly
optimal control policy with high probability.

Sample complexity has been widely studied in optimal
transport theory [39], machine learning [18], [40], [17],
[41], algorithmic game theory and mechanism design
[42], [43], [44], [45]. However, to the best of our
knowledge, we are the first to introduce the notion of
sample complexity in storage-control research. In this
study, we investigate the sample complexity bound to
ensure a small error bound on the computed cost.

Guo et al. converted the control problem to probably
approximately correct (PAC) learning and proved that the
problem can have a sample complexity guarantee if it has
two special forms [38]. Assuming that the input space of
a control problem is a product distribution of n indepen-
dent distributions, a control policy can be regarded as a
hypothesis in PAC learning, which is a mapping between
the input space and [0, 1]. The set of all possible policies
can be regarded as the hypothesis set. The cost incurred
by the policy can be interpreted as the reward of PAC
learning. The true distribution is not known; however,
we can learn an empirical distribution from the known
samples. The difference in the reward of a hypothesis
between the empirical distribution and true distribution
is just a famous concept, the generalization error. In
the PAC learning theory, if we sample a sufficiently
large number of times, the generalization error of any
hypothesis will be sufficiently small. Therefore, if we
simply choose the optimal hypothesis on the empirical
distribution, it is a nearly optimal hypothesis on the true
distribution.

C. Our Contribution
In this study, we consider a general and complex

storage model and derive the sample complexity bound
to extract a nearly optimal control policy. The sample
complexity can be regarded as a criterion to measure
the value of data. Our contributions are summarized as
follows:

• We theoretically defined and analyzed the sample
complexity problem of energy-storage control. The
sample complexity problem clarifies the trade-off
frontier between the performance of a control policy
and the size of data collected from the consumers.
Thus, the data-use efficiency of every control policy
can be assessed. To our best knowledge, we are
the first study systematically developing the sample
complexity theory in the area of optimal control in
smart grid. In contrast, the current sample com-
plexity discussions are mainly active in machine
learning.

• We proposed a double-threshold control policy and
demonstrated its optimality of utilizing the data
according to our sample complexity theory. In ad-
dition, the double-threshold control policy is also
economically optimal, which is able to figure out the
benefit-maximization storage charging-discharging
strategy. Therefore, our research demonstrates that
there exists an economically energy-control strategy
that also most efficiently utilizes the data.

• We modeled the trade-off relationship between the
computational load, the size of data collected from
consumers, the computational load, and the cost of
energy-storage operation. Given the same energy-
storage operation cost, the fewer consumer data
collected induce a higher computational load of
computing the optimal control strategy. The trade-
off relationship further allows us to develop the
model calibrating the marginal value of the collected
data.

III. MODEL

Our storage control model is based on a previous
study [26]. A power system in which the demand at the
ith time slot is di, which yields a distribution whose
cumulative distribution function is Di. Assume that the
support set of Di is [0, Di], and let D = maxi{Di}. The
demand di is not necessarily identical for different time
slots; however, we assume that they are independent. At
each time slot, the user can satisfy the demand via two
options: either buying from the grid at the current price
or discharging from the storage. Consumers make their
decisions according to a ToU price. Let pi be the ToU
price in the ith period; we assume that 0 ≤ pi ≤ p.

Based on the storage-operation model presented in
[26], we further consider additional constraints, including



• Storage loss: The storage is not completely efficient.
The energy in the storage is lost over time.

• Charge & discharge loss: The charging and dis-
charging process is also not completely efficient. It
depends on the parameter of charging and discharg-
ing efficiency.

We, particularly, include these two constraints mainly
because they cause the storage control to be sensitive
to the accuracy of demand forecast. We also include the
constraints in the model of [26], which include

• Capacity constraint: During the process, the storage
level is upper bounded by the capacity.

• Charge & discharge speed: The user has a charg-
ing/discharging limit per slot.

We assume that the energy level at the beginning of the
ith time slot is Ci. During the ith time slot, the energy
directly purchased from the grid is denoted as A1(i), the
energy injected into the storage as A2(i), and the energy
discharged from the storage as A3(i). The capacity of the
storage, and charging and discharging speeds are denoted
as C, Ac, and Ad, respectively. Assuming that the storage
loss is γ, while the charging and discharging losses are
µc and µd, respectively. Therefore, the constraints of the
storage control in the ith time slot are modeled as below:

Aj(i) ≥ 0, ∀j ∈ {1, 2, 3}, (1)

A2(i) ≤ Ac (Charge speed constraint), (2)

A3(i) ≤ Ad (Discharge speed constraint), (3)
A1(i) + µdA3(i) = di (Discharge loss), (4)

Ci + µcA2(i)−A3(i) ≤ C (Capacity constraint),
(5)

Ci+1 = γ(Ci + µcA2(i)−A3(i)) (Storage loss). (6)

Although the demand in each period yields a latent
distribution, the distribution is unknown to the storage
operator. Instead, the operator has a set of historical de-
mand data, which can be used to estimate the information
of Di. We aimed at designing a nearly optimal storage
operation policy based on data and discuss the theory of
how the size of the data set influences the performance
of the nearly-optimal control strategy.

IV. THEORY AND ALGORITHM

The key question here is how much extra cost will
incur due to the use of the demand samples compared
with the control according to the distribution of the
demand. The other question is whether all samples are
necessary. When the size of the sample set is large, using
all samples incurs a high computational load. Therefore,
the sample-based control has to make a unique decision
about how many samples should be used. We discuss
this question by examining how the resolution of samples
impacts the performance of the sample-based DP.

In this section, we first clarify the optimal storage
control according to the distribution of demand. Then, we
propose a sampled-based DP algorithm, which generates
the optimal control strategy according to the samples
of demand. Finally, we calibrate the difference between
using the distribution and using the samples.

A. Optimal Control Policy: Double-Threshold Structure

The optimal storage control needs to make three deci-
sions: the energy purchased from grid A1(i), the amount
of charging A2(i), and the amount of discharging A3(i).
To simplify the discussion, we demonstrate that we only
need to focus on the strategy for setting Ci+1, which will
fully decide the value of A1(i), A2(i), and A3(i). The
proof of the theorem is presented in the appendix A.

Theorem IV.1. If the storage level at the beginning of
the next time slot, Ci+1 is provided, the optimal solutions
for A1(i), A2(i), and A3(i) are fixed.

The above theorem reduced the number of controlled
variables from three to one. In the rest part of this
subsection, we mathematically formulate the sample-
based storage-control problem of deciding Ci+1 in order
to enable the discussion about the value of data. Here, we
use the sample-based DP problem to formulate the stor-
age control problem. We select the DP problem because
the DP formulation can clarify the optimal strategy in
both the sample-based and the distribution-based cases.
Thus, the distribution-based optimal strategy is able to
play the role of benchmark for calibrating the value of
data.

To develop the sample-based DP, we have to se-
quentially clarify the state transition function of battery
cross-time slots, feasible action space, and the objective
function of the storage control problem. Then, we can
get the optimal control strategy.
State transition function: We first propose the associ-
ated state transition function of the energy storage control
in every stage. The cost in each time slot arises from
the purchase from the grid. If the storage is not charged
or discharged, the battery level in the next time slot
will be γ · Ci, and the operator will suffer a cost of
dipi. When γ−1Ci+1 < Ci, The battery is discharged
while A2(i) = 0. In this case, the residual demand is
satisfied by directly purchasing energy from the grid.
Symmetrically, the battery discharge when γ−1Ci+1 >
Ci while A3(i) = 0. According to the above analysis,
the transaction of the cost function time slot i to i + 1
is that:

gi(Ci+1, Ci, di) =[di + (γ−1Ci+1 − Ci)
+µ−1

c

+ (γ−1Ci+1 − Ci)
−µd]pi,

(7)

where x+ = max{x, 0} and x− = max{−x, 0}.



Feasible action space: The constraints of the storage in
equations 1–6 define the feasible set of Ci+1. We convert
equations 1-6 to three types of constraints about Ci+1.
The first type is the charging-discharging speed limit,
which is −Ad ≤ γ−1Ci+1 − Ci ≤ Acµc.

The second type is the constrain about the lower-bound
of energy stored in the battery because of the discharge
speed constraint: γ−1Ci+1 − Ci ≥ −µ−1

d Di.
The above two types of constraints and the storage

capacity constrain together determine the upper and
lower bounds of the Ci+1, which is denoted by Ui(Ci)
and Ui(Ci) respectively.

Ui(Ci) = γ ·min{C,Ci +Ac},
Ui(Ci) = γ ·max{0, Ci −Ad, Ci − µ−1

d Di}.
(8)

Objective function The storage control pursues mini-
mizing the total energy cost during the whole operation
period. We use Gi(Ci) to denote the total cost after time
i. Therefore, the objective function of the energy storage
control is to minimize

Gi(Ci) = Edi∼Di

[
Gi+1(C

∗
i+1) + gi(C

∗
i+1, Ci, di)

]
,

(9)

where C∗
i+1 is the optimal solution for the cost.

Double-threshold structure of the optimal control
strategy: According to the above objective function and
feasible action space, the optimal control strategy of the
battery is

C∗
i+1 = argmin

x∈[Ui(Ci),Ui(Ci)]

{Gi+1(Ci) + gi(x,Ci, di)}.

(10)

We argue that the optimal control strategy of Ea. Equa-
tion 10 satisfies a double-threshold rule, which is sum-
marized in the following theorem.

Theorem IV.2. There exist two thresholds β−
i , β+

i , which
determine the optimal control strategy C∗

i+1.

C∗
i+1 =


min{β−

i , Ui(Ci)} Ci ≤
β−
i

γ ,

max{β+
i , Ui(Ci)} Ci ≥

β+
i

γ ,

γCi
β−
i

γ ≤ Ci ≤
β+
i

γ .

(11)

The entire proof can be found in appendix B.

B. Sample-based dynamic programming (SDP)

Because of the double-threshold structure explained
in Theorem IV.2, all the optimal control strategies of the
total n periods can be characterized by 2n thresholds. In
the following subsections, we utilize this observation to

analyze the difference between the scenario of using the
distribution and that of using the samples.

We first develop the sample-based DP algorithm of op-
timal storage control. We develop the sample-based DP
by two steps. First, we estimate the empirical distribution
from the samples. Then, we use the DP algorithm based
on the empirical distribution to obtain the sample-based
control strategy.

Algorithm 1 uses the empirical distribution function
(EDF) to estimate the true distribution. The EDF is
broadly adopted in the main-stream sample complexity
literature. The popularity of EDF is due to two advan-
tages. First, the EDF does not rely on any assumption
about the family and parameters of the estimated true dis-
tribution. Therefore, once the data is sufficiently sampled,
the EDF can always converge to the true distribution.
Second, in many cases, the EDF is empirically efficient.
The estimation divides the entire support set of the
demand level into a sequence of bins, whose width is
ϵ2. Every sample is rounded up to the nearest multiple
of ϵ2.

Algorithm 1 Discretize Empirical Distribution

Require: Demand data Dij

1: N ← the number of samples
2: for i = 1, · · · , n do
3: for j = 1, · · · , N do
4: P e

i (⌈
Dij

ϵ2
⌉ · ϵ2)← P e

i (⌈
Dij

ϵ2
⌉ · ϵ2) + 1

N
5: end for
6: end for

According to the empirical distribution, we can de-
velop the associated DP algorithm to clarify the threshold
rules for determining Ci+1. We refer to the DP algorithm
using the empirical distribution as the sample-based DP
algorithm (SDP), which is summarized in Algorithm 2.
Note that the feasible domain of the decision variable
Ci+1 is continuous. To develop the SDP, the feasible
domain of Ci+1 needs to be discretized for all i. We
refer the feasible domain of Ci+1 as [Ui(Ci), Ui(Ci)]
and discretize the domain by the resolution of ϵ1. The
discretized feasible domain of Ci+1 is defined as A =

{0, ϵ1, · · · , ⌊Cϵ1 ⌋ · ϵ1} ∩ [Ui(Ci), Ui(Ci)].
Note, the SDP still made the decision of charging

and discharging according to the double-threshold rule
defined in Equation 11. In contrast to the theoretical
optimal strategy, the optimal decision of SDP C∗

i+1 must
be a multiple of ϵ1. Line 2-5 computing the approxi-
mation of Ge′

i+1(·). The empirical distribution we use
is discretized. Therefore, we use ∆(j)

ϵ1
to approximate

Ge′

i+1(·). To figure out the double thresholds, we no-
tice that g(Ci+1, Ci, di) is piecewise linear respect to
Ci+1 while the slope of both pieces are γ−1µ−1

c pi and
γ−1µdpi respectively. The two slopes are the thresholds.



According to Lemma B.2, Ge
i+1(·) is a convex function.

Thus, its derivative is monotone decreasing. If we find the
point such that Ge′

i+1(·) = γ−1µ−1
c pi or γ−1µdpi then it

is not profitable to charge or discharge anymore at that
point. Line 9-12 compute the optimal C(i + 1)∗ based
on the optimal thresholds computed in line 6 and line 7.
Because of the limitation of charge/discharge speed, if
we take floor function when we discharge it may violate
the constraint, so we take the ceil to discretize. For the
same reason, we take the floor when charge. The line 13
updates Ge

i (·).

Algorithm 2 Sample-based Dynamic Programming

1: Initialize ∀i, Ge
n+1(i)← 0

2: for i = n, · · · , 1 do
3: for j = 0, ϵ1, · · · , (⌊Cϵ1 ⌋ − 1) · ϵ1 do
4: ∆(j)← (Ge

i+1(j + ϵ1)−Ge
i+1(j))

5: end for
6: β−

i ← Smallest j such that ∆(j) ≤ γ−1µ−1
c piϵ1

(if there is no such j, then β−
i ← ⌊Cϵ1 ⌋ · ϵ1)

7: β+
i ← Smallest j such that ∆(j) ≤ γ−1µdpiϵ1

(if there is no such j, then β+
i ← ⌊Cϵ1 ⌋ · ϵ1)

8: for j = 0, ϵ1, · · · , ⌊Cϵ1 ⌋ · ϵ1 do
9: if Storage discharge then

10: C∗ ← ⌈C
∗
i+1

ϵ1
⌉ · ϵ1

11: else C∗ ← ⌊C
∗
i+1

ϵ1
⌋ · ϵ1

12: end if

13: Ge
i (j)←

⌈ D
ϵ2

⌉·ϵ2∑
di=0

P e
i (di)(G

e
i+1(C

∗)+gi(C
∗))

14: end for
15: end for

Remark 1: The sample complexity of deep-neural
network (DNN) method for storage control can also
be analyzed. In the above energy control problem, we
argue that reinforcement learning (RL) can also achieve
the same sample complexity as DP. In fact, the RL
is equivalent to the DP in the storage-control model
formulated in Section III. Here, we explain how Q-
learning, one type of RL, is equivalent to DP. During
the training process, the Q-learning algorithm iteratively
updated the Q-value in every state. In the storage control
model formulated in Section III, we can first compute
all possible costs of the nth time slot Gn(Cn). Then,
we can run the Q-learning algorithm to determine the
optimal battery level of the (n − 1)th time slot. The
optimal battery level makes the Q-values of the (n−1)th
time slot equal to Gn(Cn). Then, we can compute all
possible costs of the (n − 1)th time slot. Following the
same process, we can use Q-learning to determine the
optimal battery level of every time slot. Thus, the Q-
learning is equivalent to the DP in our storage control
problem.

C. Sample Complexity of SDP

The above discussion reveals two steps through which
using data to control storage incurs a loss. First, there
can exist a difference between the true distribution of the
demand from the empirical distribution estimated from
the demand data. Particularly, the difference between
the two distributions is contingent on the size of ϵ2.
Consequently, it is the resolution of empirical distribution
estimation that determines the gap between the optimal
strategy and SDP strategy. Further, the gap is also contin-
gent on the resolution of the control-space discretization
ϵ1.

In this subsection, we calibrate the total loss deter-
mined using ϵ1 and ϵ2 by performing a backward analy-
sis. We first focus on the loss incurred by discretizing the
action space and assume that the empirical distribution
is given. We denote the total cost of the storage control
problem as H(A,F ) associated with the control policy
A and demand distribution F . Therefore, the loss caused
by discretizing the action space is H(Ŝ,D)−H(S,D),
where Ŝ is the strategy solved using the SDP when the
empirical distribution is D. S is the theoretical optimal
control strategy associated with the empirical distribution
is D. Note that D = ×n

i=1Di because we assume that
the hourly demands are independent of each other. We
argue that the loss owing to the discretization on the
action space is linearly related to ϵ1.

Theorem IV.3. Assuming the optimal policy for D is S
and the optimal policy given in Eq. 11 on the discretized
action space is Ŝ, we have,

H(Ŝ,D)−H(S,D) ≤ pnϵ1. (12)

Proof. We first develop a particular control policy that
discretizes the action space by the resolution of ϵ1 and
denote it by S′. Subsequently, we demonstrate that S′

satisfies
H(S′,D)−H(S,D) ≤ pnϵ1.

Because the SDP algorithm guarantees that Ŝ is the
optimal strategy when the discretization resolution is ϵ1.
Therefore,

H(Ŝ,D)−H(S,D) ≤ H(S′,D)−H(S,D);

thus, we have the conclusion.
We define S′ as a proxy of S: when the strategy of

S at time slot t decides to discharge the storage to the
level of Ci+1,S , the strategy of S′ is rounding Ci+1,S up
to the nearest multiple of ϵ1. If the strategy of S at time
slot t is to charge or maintain the energy stored in the
battery to the level of Ci+1,S , the corresponding strategy
of S′ is rounding Ci+1,S down to the nearest multiple
of ϵ1.



We use backward induction to prove that S′ satisfies
Equation 8. We first argue that the total energy cost
G′

i(Ci) at the end of the time slot i satisfies

∀Ci, G
′
i(Ci)−Gi(Ci) ≤ p(n− i+ 1)ϵ1.

In the last time slot n, the storage only needs to dis-
charge. S′ may buy at most ϵ1 extra energy from the
grid, and the loss is at most pϵ1. Thus, G′

n(Cn) satisfies
the condition Equation 8.

Assume that the conclusion holds for i+1, and that, for
the ith time slot, S chooses c. If the storage discharges,
the cost for S′ to buy extra energy is at most pϵ1.
According to the induction hypothesis,

G′
i+1(⌈

c

ϵ1
⌉ · ϵ1) ≤ Gi+1(⌈

c

ϵ1
⌉ · ϵ1) + p(n− i)ϵ1

≤ Gi+1(c) + p(n− i)ϵ1

Otherwise, if the storage charges, the choice of S′ may
be smaller than c by at most ϵ1. Therefore,

G′
i+1(⌊

c

ϵ1
⌋ · ϵ1) ≤ Gi+1(⌊

c

ϵ1
⌋ · ϵ1) + p(n− i)ϵ1

≤ Gi+1(c) + p(n− i+ 1)ϵ1

According to the above Theorem, we bounded the total
loss due to the discretization of action space. Now, we
present the main theorem of this study, which describes
the relationship between the number of samples and the
loss of using SDP to decide the storage control.

Theorem IV.4. If there are O( 1
ϵ32

log 1
δ ) samples, with a

probability of at least 1− δ, we have

H(SDP,D)−H(S,D) = O(nϵ1 + nϵ2). (13)

Because we have proved that the loss due to the dis-
cretization of action space is bounded in Theorem IV.3,
we only need to bound the loss due to the error of
estimating the distribution of demand from the samples.
Therefore, the task is to prove that H(S,D)−H(Ŝd, Dd)
is bounded for a sufficient number of samples. Here,
H(S,D) denotes the total energy cost when the battery
is controlled according to the theoretical optimal strategy
S based on the true demand-distribution D. H(Ŝd, Dd)
denotes the energy cost when the battery is controlled
using the SDP strategy Ŝd according to the empirical
distribution Dd, which is estimated from the samples of
demand.

We decompose the proof of this theorem into three
parts. In the first part, we prove that using the optimal
control strategy according to the empirical distribution
and true distribution will yield sufficiently similar control
results. We prove this argument in Lemma IV.1. In the
second part, we argue that the results of control according
to the optimal strategy and those according to the SDP

strategy are sufficiently close when we have a sufficient
amount of data to estimate the empirical distribution.
We prove this argument in Lemma IV.2. In the third
part, we prove that the optimal and SDP strategies are
significantly similar when they both rely on the empirical
distribution. We prove this argument in Lemma IV.2.

Lemma IV.1. Assuming the optimal control policy for
Dd is Ŝd, we have:

H(Ŝ,D) ≥ H(Ŝd,Dd)− (

n∑
i=1

pi)ϵ2. (14)

Proof. We first analyze the optimal strategy to control
the battery according to the empirical distribution es-
timated using the samples. When the demand in the
ith time slot Di(x|x ∈ [(m − 1)ϵ2,mϵ2]), Ŝd returns
the optimal strategy, which is computed according to
Ŝ when the demand is mϵ2. Therefore, the Ŝd-based
strategy always purchases no less electricity from the grid
than the Ŝ-based strategy. However, the extra purchased
demand is less than ϵ2 and incurs an additional cost
piϵ2 in the ith time slot. For the total n time slots,
H(Ŝ,D) ≥ H(Ŝd,Dd)− (

∑n
i=1 pi)ϵ2.

Lemma IV.2. If there are O( 1
ϵ32

log 1
δ ) samples, then,

with a probability of at least 1− δ, we have

H(Ŝd,Dd) ≥ H(SDP,Dd)−Mϵ2, (15)

where M =
∑n

j=1(E[Di] + Cµ−1
c + ϵ2)pi = O(n).

Proof. We can directly apply the conclusion of Theorem
1 of [38] to prove this lemma. According to Theorem
1 of [38], if the cost function is bounded in [0, 1],
and the sample space is a product distribution of n
distributions whose support size is not larger than k, then
with probability 1− δ we can have an ϵ-additive optimal
strategy with O(nkϵ2 log 1

δ ) samples. The support size k

in our storage control problem is C
ϵ2

, and the only thing
remaining to apply the theorem is to bound the cost in
our problem.

We argue that H(A,D) ≤ M in the energy storage
control problem. In the ith time slot, the maximum
expected unit of energy we can consume when faced
with Dd

i is (E[Dd
i ] + Cµ−1

c ). Further, we found that
E[Dd

i ] ≤ E[Di] + ϵ2.
Therefore, by applying Theorem 1 of [38], we obtain

Lemma IV.2.

Lemma IV.3.

H(SDP,Dd) ≥ H(SDP,D)− pnϵ1. (16)

Proof. This is intuitive because D is stochastically dom-
inated by Dd; hence, using the same control policy will
incur more cost. Equation 16 can be proven by induction.
GSi(Ci) and GSd

i (Ci) can be denoted as the cost of



SDP after the ith time slot when faced with D and Dd,
respectively. We prove that, for all i and Ci,

GSd
i (Ci) ≥ GSi(Ci)− p(n− i+ 1)ϵ1.

Particularly, GSd
1 (0) ≥ GS1(0)− pnϵ1 is our objective.

First, ∀Ci, GSd
n(Ci) ≥ GSn(Ci) − pϵ1 because we

only need to discharge in the last time slot. S′′ only needs
to purchase at most ϵ1 units of extra energy from the grid.
Assume that the conclusion is valid for i+ 1. In the ith

time slot, simultaneous charging and discharging is not
profitable. If the storage charges, the extra demand of Dd

can only be bought from the grid; thus, the conclusion
is valid. However, if the storage discharges, S′′ needs
to also purchase at most ϵ1 units of extra energy from
the grid. Therefore, according to the monotonicity of GS
and the induction hypothesis, the conclusion is valid.

Combining equations 14-16 and Theorem IV.3,

H(Ŝ,D) ≥ H(SDP,D)− pnϵ1 − (M +

n∑
i=1

pi)ϵ2,

which completes the proof of Theorem IV.4.

D. Value of data: tradeoff between data size, computing
load, and performance of storage control

Theorem IV.4 also provides an insight into the trade-
off between data values and computational load. The
SDP strategy’s performance is guaranteed only if the size
of the sample set is larger than O( 1

ϵ32
log 1

δ ), which is
contingent to the resolution of control-space discretiza-
tion ϵ2. If the discretization has a high resolution, a
small set of samples can guarantee a low cost of storage
control. However, the high resolution leads to a heavy
computational load. According to an computational com-
plexity analysis of algorithm 2 we have the following
proposition:

Proposition IV.1. The running time of algorithm 2 is
O(nDC

ϵ1ϵ2
).

Thus, our theoretical discussion about the sample
complexity manifests that more computational power can
reduce the requirement for demand data, which include
the privacy information of consumers. On the other hand,
more data can reduce the requirement of computational
power, which leads more energy use for computing as
well as carbon emissions. The data of demands and
computational power are substitute inputs for exploring
storage-control strategy.

V. NUMERICAL EXPERIMENTS

A. Experiment setting

We evaluate the performance of SDP by the public
data set, Pecan street [46] which provides real electricity

Fig. 1: A multi-peaked ToU pricing scheme

consumption data from 1000 households in the summer
of 2016 which is decomposed to 1 minute granularity.
We took 105 samples as the test set and 104 of them as
the training set. For the price part, we consider a 4-tier
multi-peaked ToU pricing from Ontario Energy Board
[47], which is shown in Figure 1.

B. Necessity and loss of the SDP

To evaluate the performance of the SDP, we conducted
numerical experiments using real-world data considering
that the retail market uses a multi-peaked ToU pricing
scheme. We first illustrate the necessity of using samples
to design a control policy. In the experiment, whose
results are summarized in Figure 2, we compare the per-
formances of SDP and two online algorithms proposed in
[30]. One online algorithm is threshold-based: the storage
is discharged only if the current price is higher than a
given threshold (Figure 2(a)). Although this algorithm
has a competitive ratio guarantee, its performance is
worse than that of SDP. The second is a look-ahead
algorithm, which has the information on future demands
within a time window. The performance of this algorithm
is better than that of the threshold-based online algorithm
because it knows the future information (Figure 2(b)).
However, the look-ahead algorithm is still worse than
the SDP.

The comparison shown in Figure 3 is designed to nu-
merically demonstrate that the SDP is the optimal strat-
egy from the data-use. We compared the SDP with the
approaches for designing the control strategies according
to the distribution estimated from the data obtained using
two other methods. One method is a parametric method
that estimates the distribution by the truncated-normal
approximation. The other is a non-parametric method



(a) Threshold-Based Online Algorithm

(b) Look-Ahead Algorithm

Fig. 2: Sampling Results of Online Algorithms in [30]

that estimates the distribution using the kernel density
estimation method (KDE). We can see that the SDP
method performs better than the other two methods
although all three methods develop the control strategy
according to the estimated distribution learned from the
samples. The result shown that the data-use efficiency
is contingent to the pair of estimation approach and
control strategy. The data will be efficiently use only
if both the estimation approach and the control strategy
are appropriately designed. For instance, the empirical
distribution and the SDP together can guarantee the
efficient use of data.

In fact, we observed that the results of the SDP strat-
egy are significantly close to those of the optimal strategy
even if the data size is small. Further, the variance of
the SDP strategy due to the sample uncertainty is also
limited even if the dataset is small. When there are
only 1000 samples, the variance of the SDP strategy’s
performances is as narrow as that of the look-ahead
algorithm when there are more than 3000 samples. Thus,
among all the examined methods, the SDP performed the
best from both the expected cost and sample-uncertain
risk perspectives.

Fig. 3: Sampling Results of Different Methods

Fig. 4: Error Probability

C. Value of data: trade off between data size, computa-
tional load, and the control performance

We also verify the values of data given different
resolutions of estimating the empirical distribution. Con-
sidering three resolutions shown in Figure 4, It is clear
that when the resolution is high, a small set of samples is
sufficient to limit the gap between the SDP strategy and
theoretically-optimal strategy. When ϵ2 = 0.001, we only
need less than 2000 data points to obtain a zero error
probability. In contrast, when ϵ2 = 0.001, we cannot
obtain the zero error probability even if the dataset size
is over 8000.

Beyond manifesting the trade-off between ϵ2 and the
size of data sample, Figure 4 also presents the elbow-
shape of data’s value of reducing the error. For all
three scenarios, there always exists a tipping point after
which more data has very limited value for reducing the
SDP’s extra cost. Therefore, our method also generates
a method to decide whether the size of data collection is
necessary.

VI. CONCLUSION AND DISCUSSION

In this study, we investigated the optimal control
problem of battery storage systems under the ToU pric-



ing scheme. We formulated the problem using dynamic
programming and derived the optimal solution struc-
ture while considering the charging/discharging ineffi-
ciency and limit, and storage loss. We are the first
to introduce the concept of sample complexity into
storage control research. With this important tool, we
proved the high probability error bound. Using numer-
ical experiments, we demonstrated the effectiveness of
our proposed dynamic programming method and error
bound. Our research is only the first step to discuss the
sample complexity of energy-storage control. There still
exists a sequence of open questions, which deserve the
future comprehensive studies. For instance, the future
study shall examine the sample complexity of controlling
various types of storage that have different technical
features. It is critical to verify how much data is nec-
essary for the control of every type of storage. From the
privacy information protection perspective, it also needs
to know whether the data-efficient control method varies
by storage types. When the storages belong to different
owners, the sample complexity analysis can clarify the
size of data sharing that enables the best cooperation
equilibrium.

The future studies also need to examine the situation
when the assumptions of our research are absent. As
the first study discussing the sample complexity of the
storage control, our model is built upon a sequence of
assumptions. For instance, we in this study assume the
hourly demands are independent. In the future study, it
is necessary to discuss the sample complexity when the
hourly demands are correlated. If the hourly demands
are correlated, one hour’s demand can store information
about the distributions of the demands in other hours.
The covariance matrix of the hourly demands determines
the optimal sampling approach, which can significantly
affect the data efficiency of each control method. Thus,
the discussion has to mainly focus on the relation be-
tween the covariant matrix, the sampling approach, and
the sample complexity of the control method.

It is necessary in future study to discuss the sam-
ple complexity of applying the method of deep-neural
network (DNN) for smart-grid control. For the com-
plex control problems, such as multi-storage control, the
DNN-based methods such as RL are able to guarantee
a better outcome than conventional approaches such as
DP. In some cases, alternative DNN-based methods can
all guarantee the optimal control, e.g. the convolutional
neural network (CNN) model vs the full-connected net-
work model. It is necessary to discuss which DNN-based
methods are more data efficient.

In summary, the sample complexity of control problem
in smart grid deserves more attentions. Data and data-
based methods play a core role in system operation
and control in smart grid. For the same controlling

problem, the alternative data-based controlling methods
can all be available. The operator has to select one
from them. Simultaneously, the data collection has raised
the concerns about privacy leakage. The public debates
and legislation practices have explored the approach
of limiting data collection over the world. Thus, it is
necessary to systematically examine the methods’ data-
use efficiencies and assess the data value. Analyzing
the sample complexity of control method provide us the
information about the method’s data-use efficiency. The
sample complexity study can also theoretically provide
the bound of the data value. Thus, the sample complexity
for smart control in power system deserves more discus-
sions and analysis.
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APPENDIX A
PROOF OF THEOREM IV.1

The demand di is realized at time i and is satisfied by
A1(i) and A3(i):

di = A1(i) + µdA3(i).

The energy remaining at the next time slot is then,

Ci+1 = γ(Ci + µcA2(i)−A3(i)).

The cost incurred is (A1(i) +A2(i))pi.
Owing to the charging and discharging inefficiency,

simultaneous charging and discharging are not profitable.
This conclusion is drawn from an intuitive observation
that to satisfy the demand, one would reduce their total
cost by directly purchasing energy from the grid rather
than buying energy to charge their battery and then
discharging to meet the demand. With this in mind, we
can reformulate Ai(i) in terms of Ci+1 as follows:

A2(i) = µ−1
c (γ−1Ci+1 − Ci) · 1γ−1Ci+1≥Ci

,

A3(i) = −(γ−1Ci+1 − Ci) · 1γ−1Ci+1<Ci
,

A1(i) = di − µdA3(i)

= di + µd(γ
−1Ci+1 − Ci) · 1γ−1Ci+1<Ci

.

Thus, it suffices to only determine Ci+1 to determine
Aj(i).

APPENDIX B
PROOF OF THEOREM IV.2

Lemma B.1. ∀i, given di we have h1(Ci+1, Ci) =
gi(Ci+1, Ci, di) is convex.

Proof. We first verify that the feasible domain of h1(·)
is a convex set. In fact, ∀ feasible (x1, y1) and (x2, y2),
if x1 ∈ [Ui(y1), Ui(y1)] and x2 ∈ [Ui(y2), Ui(y2)], then
it is easy to verify that ∀λ ∈ [0, 1] we have λx1 + (1−
λ)x2 ∈ [Ui(λy1 + (1 − λ)y2), Ui(λy1 + (1 − λ)y2)] by
definition. For example, if x1 ≤ γ · (y1 +Ac) and x2 ≤
γ · (y2 + Ac), then λx1 + (1 − λ)x2 ≤ γ · (λy1 + (1 −
λ)y2 +Ac). Similarly, the other terms can be verified.

Furthermore, because µd < 1 < µ−1
c ,

(γ−1Ci+1 − Ci)
+µ−1

c + (γ−1Ci+1 − Ci)
−µd

=max{(γ−1Ci+1 − Ci)µ
−1
c , (γ−1Ci+1 − Ci)µd},

which is maximum for linear functions. Therefore, h is
convex.

Lemma B.2. ∀i, Gi(·) is convex.

Proof.

Gi(Ci) = Edi∼Di

[
min
C∗

i+1

{Gi+1(C
∗
i+1)+g(C∗

i+1, Ci, di)}
]
.

We prove this by induction. This statement is valid for
the last time slot n because Gn(·) = 0. Assuming that
Gi+1(·) is convex, we need to prove that Gi(·) is convex.

https://www.oeb.ca/rates-and-your-bill/electricity-rates/historical-electricity-rates
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It is sufficient to prove that, given di, h2(Ci) =
minC∗

i+1
{Gi+1(C

∗
i+1)+g(C∗

i+1, Ci, di)} is convex. Gi(·)
is non-negative weighted sum of convex functions; there-
fore, Gi(·) is also convex.

According to the induction hypothesis and
Lemma B.1, Gi+1(x) + g(x, y, di) is convex with
respect to (x, y) pair. Assuming that the corresponding
optimal solutions for Ci,1 and Ci,2 are C∗

i+1,1 and
C∗

i+1,2, respectively, ∀λ ∈ [0, 1]

h2(λCi,1 + (1− λ)Ci,2) ≤ Gi+1(λC
∗
i+1,1 + (1− λ)C∗

i+1,2)

+ g(λC∗
i+1,1 + (1− λ)C∗

i+1,2, λCi,1 + (1− λ)Ci,2, di)

≤λ · (Gi+1(C
∗
i+1,1) + g(C∗

i+1,1, Ci,1, di))

+ (1− λ) · (Gi+1(C
∗
i+1,2) + g(C∗

i+1,2, Ci,2, di))

=λ · h2(Ci,1) + (1− λ) · h(Ci,2),

which complete the proof.

Using Lemma B.2, because [Ui, Ui] is compact, a
minimum element exists, and it is unique. Hence, C∗

i+1

is well-defined. Further, it can be shown that ∀i, Gi(·) is
non-increasing.

Lemma B.3. ∀i, Gi(·) is non-increasing.

Proof. This is proven by induction. First, Gn(·) = 0
and is non-increasing. Assuming that Gi+1(·) is non-
increasing, we prove the following stronger proposition:
If Ci,1 < Ci,2 and their optimal solutions are C∗

i+1,1 and
C∗

i+1,2, respectively, then ∀di

Gi+1(C
∗
i+1,1) + g(C∗

i+1,1, Ci,1, di)

≥Gi+1(C
∗
i+1,2) + g(C∗

i+1,2, Ci,2, di).

g(·, ·, ·) is non-decreasing with respect to the first
dimension and non-increasing with respect to the second
dimension. If C∗

i+1,1 ∈ [Ui(Ci,2), Ui(Ci,2)], then

Gi+1(C
∗
i+1,2) + g(C∗

i+1,2, Ci,2, di)

≤Gi+1(C
∗
i+1,1) + g(C∗

i+1,1, Ci,2, di)

≤Gi+1(C
∗
i+1,1) + g(C∗

i+1,1, Ci,1, di),

where the last inequality arises from the monotonicity of
g(·, ·, ·).

However, when C∗
i+1,1 /∈ [Ui(Ci,2), Ui(Ci,2)],

C∗
i+1,1 < Ui(Ci,2),

Gi+1(C
∗
i+1,2) + g(C∗

i+1,2, Ci,2, di)

≤Gi+1(Ui(Ci,2)) + g(Ui(Ci,2), Ci,2, di)

≤Gi+1(C
∗
i+1,1) + g(C∗

i+1,1, Ci,1, di),

where the last inequality arises from the monotonicity of
g(·, ·, ·) and the induction hypothesis.

With these two lemmas in hand, a similar method
can be used as in [26] to prove Theorem IV.2, which
is omitted in this paper.
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