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Abstract—The transportation sector is one of the main con-
sumers of global energy. So, its electrification is crucial for a
sustainable future. However, the slow developments in the public
infrastructure can be a major bottleneck for such electrification.
An increasing number of electric vehicle (EV) charging stations
are being built across the world to improve this infrastructure.
Competition amongst the EV charging stations improves the
market efficiency. In this paper, the effect of this competition on
the setting of the service surcharge is investigated. The service
surcharge design characterization at the Nash equilibrium for
both the symmetric as well as the general market conditions is
discussed. The value of the storage system to the transportation
sector electrification is also analyzed. It is observed that the
storage system helps in improving social welfare by reducing
the service surcharge in the market, without hurting the revenue
of the EV charging stations.

I. INTRODUCTION

With the increasing awareness of global warming, recent
years have witnessed rapid electrification in the transportation
sector. However, such electrification is challenging for both the
end-users and the public infrastructure. Many electric vehicle
(EV) owners are suffering from mileage anxiety since there are
limited charging stations even in major cities. Their numbers
are further low along the highway and other places. The
diverse charging technologies and standards make the situation
even worse. While electrification may relieve the environmen-
tal stress, the associated huge demand for electricity warrants
an urgent upgrade of the existing distribution network. To
accommodate these challenges, an ideal charging station with
diverse charging facilities to serve all the end-users is needed.
These stations may also have to upgrade their distribution
network. Many charging stations choose to transfer such costs,
together with other operational costs, to the end-users as the
service surcharges on top of the energy cost. In this work,
the competition between the various EV charging stations is
investigated in terms of the service surcharges.

In recent years, EV charging price design has been well
investigated. Researchers mainly follow the classical cost-
benefit analysis framework to design the global optimum price
with different optimization targets, such as social welfare [1],
load balancing [2], valley filling [3], congestion alleviation [4],
and charging station’s profit [5]. Some works also examine the
price-based demand response using game-theoretical analysis
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[6]–[8]. However, global optimum price design is always im-
practical due to the competition amongst the charging stations.
Therefore, the designed price can hardly reflect the structure
of service surcharge in the real world.

Some works have analyzed the various competitive pro-
cesses adopted by the EV charging stations. Some of the exam-
ples for the competitive processes are citing competitions [9]
and energy trading competitions [10]. This paper is based on
the pricing competition. The hierarchical game-based approach
has been used for both the charging stations and the EVs for
the pricing competition [11]. Also, there are studies based on
the supermodular game [12] and the Stackelberg game [13],
but most of them do not characterize the specific form of
the Nash Equilibrium. The energy storage of the EV charging
stations has a major impact on the price. Recent works mainly
focus on price design [5] and storage control [14]. However, to
the best knowledge of the authors, none of the existing works
consider the effect of storage on the pricing games.

In this paper, an attempt is made to analytically understand
the service surcharge design from a game-theoretic perspective
and to investigate the quantitative impact of storage on pricing.
All the necessary proofs are presented in the Appendix.

II. SYSTEM MODEL

A region having several charging stations and several EVs
is considered. For simplicity, it is assumed that the EVs can
only be charged at the charging stations within the region, and
charging stations will purchase the electricity from the grid to
meet the EVs’ demand. Specifically, the charging stations are
allowed to freely set the charging price, the sum of electricity
price from the grid, and the service surcharge. In this section,
the local electricity market, the EV model, and the charging
station model are introduced in the following subsections.

A. Local Electricity Market

The local utility company is assumed to offer a two-tier
Time-of-Use (ToU) pricing scheme, including two continuous
periods in a day, i.e., the peak and the off-peak periods. The
corresponding electricity prices are fixed as πh and πl (πh ≥
πl), respectively. This information is assumed to be available
to all the charging stations. This setting makes it easier to
analyze the nature of the service surcharge structure.

B. EV Model

The EV’s utility of choosing to be charged at station k.
is first characterized. Different charging stations attract users
differently. For example, a more convenient location, a lower
price, or a better service efficiency may make some charging



stations more preferable to the users than others. The relative
utility of station k is denoted by Uk.

The Logit model [15] is one of the most widely adopted
discrete choice models. It can well capture the essence of
stochastic behaviors of EV users in choosing the charging
stations with different relative utilities. Specifically, under
the utility set, U = {U1, U2, ..., Un} and Logit model, the
probability of choosing station k is as follows:

fk(Uk) =
e
Uk
µ∑n

i=1 e
Ui
µ

, (1)

where µ reflects the degree of rationality in choosing the
charging stations. Intuitively, when µ −→ 0, users choose
the station with the highest utility. On the other hand, while
µ −→ ∞, they choose the charging station with an equal
probability.

C. EV Charging Station Model

Charging stations make a profit by serving the EVs. Hence,
their decisions and revenues are affected by the EVs’ aggregate
charging demand, which varies across different periods. We
denote the charging demand at the peak and at the off-
peak periods using the random variables X and Y , their
probability density functions are given by fx(X), fy(Y ), and
their cumulative density functions are Fx(X), Fy(Y ). Such
statistical information can be inferred from the historical data.

Charging stations compete to attract EVs by setting the
charging prices, which will directly influence the EV’s utility.
The EV’s utility is assumed to be of the following linear form:

Uk(p) = Lk − p, (2)

where p denotes the charging price, and Lk denotes the kth

station’s intrinsic utility besides its price. Note that, the relative
utility Lk can also be estimated from the historical data. This
model is chosen for more insights in the subsequent analysis.

Finally, it is assumed that the charging stations are informed
of the demand statistics (e.g., µ, X , and Y ), and they are also
aware of each station’s relative utility (Lk).

III. SERVICE SURCHARGE DESIGN

It is assumed that the charging stations compete by setting
their charging prices. Since the decision-making in the two
periods is completely decoupled, the peak period is analyzed in
this section. Subsequently, the results for the off-peak periods
are directly obtained. Following the Logit model, given all the
charging prices of the n stations P = {p1, p2, ..., pn}, station
k’s expected attracted demand Pk during the peak period is
as follows:

Pk = E[X]
e
Uk(pk)

µ∑n
i=1 e

Ui(pi)

µ

,∀k, (3)

where E[X] denotes the expected total demand, and the
fraction denotes the market share. This helps us to characterize
the corresponding revenue Rk for each charging station k:

Rk = (pk − πh)Pk,∀k. (4)

It is clear that the revenue for each charging station k not
only depends on its own pricing decision (pk), but also on
the pricing decision of the other charging stations. Adopting
the revenue function as the utility function for each charging
station leads to a game among charging stations.

Formally, we have the following game:
Service Surcharge Design Game (SSDG):
• Players: All the charging stations;
• Strategy Space: The collection of all stations’ charging

prices. Specifically, pk > π,∀k, where π is the electricity
rate set by the local grid operator;

• Utility Functions: The expected revenue Rk of each
charging station k defined in (4).

A. Symmetric Market Analysis

The first cut understanding is obtained by analyzing the
Nash equilibrium (N.E.) of SSDG in the symmetric market
conditions, where all the charging stations share the same
attractiveness to all the EVs, i.e., all the Lk’s are the same. In
this case, we can prove the following Theorem.
Theorem 1: The SSDG in the symmetric market conditions
yields a unique N.E.. At the equilibrium, all the charging
stations set their charging prices as follows:

pk = πh +
n

n− 1
µ,∀k. (5)

It is evident that in this case, all the charging stations
will charge the same service surcharge n

n−1µ on top of the
electricity price πh. This explains the physical meaning of µ.
It serves as the baseline of the service surcharge, the lower
bound of which is exactly µ. This is due to the nature of EV’s
choice model and is irrelevant to the level of competition.

Although there is a lower bound for the service surcharge,
the revenue of each charging station diminishes as the compe-
tition becomes fiercer. Specifically, for each charging station
k, its revenue during peak period is

Rk =
µ

n− 1
E[X],∀k. (6)

For the results during the off-peak periods, the only dif-
ference is the replacement of the ToU price and the random
demand. πh can be simply replaced with πl, and X with Y .
All the analysis follows the same routine.

B. General Market Conditions

In a more general market condition with heterogeneous
Lk’s, the N.E. does not enjoy a neat expression as in (5).
Still, we can show the N.E. uniquely exists:
Theorem 2: The general SSDG admits a unique N.E.. At
the equilibrium, the charging stations price strategies P ∗ =
{p∗1, ..., p∗n} form the solution to the following equations:

(p∗k − πh)e
− p

∗
k
µ

p∗k − πh − µ
=

n∑
i=1

e
Li−Lk
µ e−

p∗i
µ ,∀k. (7)

and the equilibrium charging price p∗k has a uniform lower
bound πh + µ.



According to Eq. (7), we can observe that its left-hand
side is decreasing monotonically with respect to pk when
pk ≥ πh + µ. Hence, price pk has a positive correlation
with Lk, which means more attractive charging stations are
in a favorable position to set higher charging prices. This also
corresponds to our intuition.

The expected revenue of station k throughout the day can
be obtained as follows:

Rk = (E[X] + E[Y ])(pk − πh − µ). (8)

This is remarkable as it reveals that in the competitive
environment, to ensure a positive revenue, it is necessary to
set the service surcharge to be at least µ.

While we cannot characterize the equilibrium prices in
the closed-form expression, one straightforward solution is
to utilize the best response dynamics. Specifically, given the
initial prices, denote p(t)k as the tth price response of station
k. The classical best response dynamics iterate as follows:

µe
Lk−p(t+1)

k
µ

p
(t+1)
k − πh − µ

=
∑
i6=k

e
Li−p

(t)
i

µ ,∀k. (9)

However, in SSDG, the best response dynamics are not
guaranteed to converge. We prove in the following theorem
that a slight modification could help.
Theorem 3: The following response dynamics of general
SSDG will converge to the Nash Equilibrium.

(p
(t+1)
k − πh)e

Lk−p(t+1)
k
µ

p
(t+1)
k − πh − µ

=

n∑
i=1

e
Li−p

(t)
i

µ ,∀k. (10)

IV. VALUE OF STORAGE

The storage system could potentially help improve social
welfare by arbitraging against the ToU. In this section, we
will again first highlight the structure of service surcharge in
the symmetric market condition, and then generalize the result
to a more practical setting.

Denote πs the daily amortized investment and maintenance
cost over the lifespan of the storage system. For simplicity,
we assume the storage system can be perfectly charged and
discharged. We adopt the greedy control policy, which fully
charges the storage system during the off-peak period and
then first uses the energy in the storage during the peak
period. This helps us to characterize the expected utility
for each charging station k under the Logit choice model.
Denote the peak charging prices for n charging stations by
P1 = {p11, ..., p1n}, the corresponding off-peak charging
prices by P2 = {p21, ..., p2n}, and the corresponding storage
investment decisions by C = {C1, ..., Cn}. The expected
revenue Rk for charging station k can be obtained as follows:

Rk =E[fk(p1k)Xp1k] + E[fk(p2k)Y p2k]
− πsCk − E[πh(fk(p1k)X − Ck)+]
− E[πlfk(p2k)Y + πlmin{Ck, fk(p1k)X}],

(11)

where fk(p1k), fk(p2k) denote the market share during peak
and off-peak periods.

Different from our analysis without storage, the decision
variables are all temporally coupled. In fact, our game-
theoretic analysis involves two-stage decision-making. In the
first stage the charging stations decide their installed storage
capacities and in the second stage they set their charging prices
(for different periods) to attract the EVs. Formally, we have:
Storage Decision Game (SDG):
• Players: All the charging stations;
• Strategy Space: The collection of all stations’ storage

capacity, Ck > 0,∀k;
• Utility Functions: The expected revenue Rk of each

charging station k as defined in (11).
Service Surcharge Design Game with Storage (SSDGS):
• Players: All the charging stations;
• Strategy Space: The collection of all stations’ peak period

charging prices pk1 and off-peak period charging prices
pk2, pk1, pk2 > πl;

• Utility Functions: The expected revenue Rk of each
charging station k as defined in (11).

Note that, the utility function is the same for both the games.
However, the decision variables (strategy spaces) are different.
To analyze the two-stage game, the notion of backward
induction is used. The equilibrium of SSDGS is characterized,
which is subsequently used as the subgame perfect equilibrium
to understand the SDG.

A. Symmetric Market Analysis

The symmetric market condition is analyzed for having a
better intuition. This results in the following theorem:
Theorem 4: The two-stage game in the symmetric market
condition admits a unique N.E.. At N.E., the charging price
p∗1, the off-peak charging price p∗2, and the storage investment
C∗ can be characterized as follows:

p∗1 = πh +
n

n− 1
µ− (πh − πl)E[X|X ≤ nC]

E[X]
, (12)

p∗2 = πl+
n

n− 1
µ, C∗=

1

n
F−1x

(
πh−πl−πs
πh−πl

)
. (13)

Note that the equilibrium charging price during off-peak
remains unchanged, as compared to the case without storage.
Only the charging price during peak period is reduced. The
storage investment capacity at the equilibrium coincides with
the results in the classical newsvendor problem [16].

In this case, it can be observed that the revenue for each
charging station k remains the same. This corroborates the fact
that the storage system helps in reducing the service surcharge
in the market and it transfers all the arbitrage gains to the end
EV users. In such cases, the storage system should be heavily
subsidized to the charging stations.

B. General Market Conditions

We can further characterize the N.E. in the general market
conditions as follows:
Theorem 5: The two-stage game admits a unique N.E.. At the
equilibrium, the charging stations peak price strategies P ∗1 =
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Fig. 1: Nash Equilibrium of SSDGS.

{p∗11, ..., p∗1n}, off-peak price strategies P ∗2 = {p∗21, ..., p∗2n}
and storage policy C∗ = {C∗1 , ..., C∗n} satisfy the following
equations:

fk(p
∗
1k)+(p∗1k− (πh−α(πh−πl))) f ′k(p∗1k)=0,∀k, (14)

(p∗2k − πh)e
− p

∗
2k
µ

p∗2k − πh − µ
=

n∑
i=1

e
Li−Lk
µ e−

p∗2i
µ ,∀k, (15)

C∗k = fk(p
∗
1k)F

−1
x (

πh − πl − πs
πh − πl

),∀k, (16)

α =
E[X|X ≤ F−1x (πh−πl−πsπh−πl )]

E[X]
. (17)

Proposition 1: The following response dynamics of the gen-
eral SSDGS will converge to the N.E..

(p
(t+1)
k − π)e

Lk−p(t+1)
k
µ

p
(t+1)
k − π − µ

=

n∑
i=1

e
Li−p

(t)

µ ,∀k, (18)

where π = πh − α(πh − πl).
Compared to (10), the dynamics given in (18) just change

πh to another fixed value π. We use this dynamics to nu-
merically characterize the equilibrium. As indicated in Fig.
1, considering a 3-charging station case, the storage system
again reduces the charging prices during peak period, and
these prices monotonically converge in 10 iterations. When the
storage capacity is increased, the peak charging equilibrium
price decreases linearly and it falls below the peak price
offered by the grid, which strongly reflects the storage system’s
ability to transfer the arbitrage gains into social welfare.

V. NUMERIC STUDIES

In this section, the real-world pricing considering service
capacity and geographical information are characterized. Also,
for this general setting, the value of investing in storage and
service capacity is demonstrated.

A. Practical Models

Unlike the model used in the above theoretical analysis,
charging stations in the real world have limited service capac-
ities, and their attractiveness to the users varies geographically.

The tanh function is used to characterize the limited service
capacity of the charging station. Formally, denote the service
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capacities of the charging stations by S = {s1, s2, ..., sn}.
When the market share of charging station k is Mk, its service
volume Vk is sktanh

(
Mk

sk

)
,∀k.

Besides, users have a geographical preference for choosing a
charging station. For example, the distance to charging stations
can be a crucial factor that affects the user preferences Lk’s.

Specifically, the users are divided into m groups based on
their geographic locations as G = {g1, g2, ..., gm}. Follow the
hoteling model [17], and the relative utility of charging station
k on user group j is defined as follows:

Lk,j = Lk − θjd2k,j ,∀k, j, (19)

where θj denotes group j’s sensitivity to the distance; µj
denotes group j’s rationality to utility; and dk,j denotes the
Euclidean distance between group j and charging station k.
Hence, station k’s revenue Rk is:

Rk = sktanh

(
Mk

sk

)
(pk − πh),∀k, (20)

Mk =

m∑
j=1

Aj
e
Lk,j−pk

µj∑n
i=1 e

Li,j−pi
µj

,∀k, (21)

where Aj denotes group j’s demand for charging.

B. Value of Service Capacity

We adopt the pricing scheme in Beijing, China. In the two-
tier ToU, the peak period is from 10:00 am to 10:00 pm, with
πh to be $0.10/kWh, and πl to be $0.06/kWh. The Pecan Street
dataset is used to simulate EV’s hourly charging demand [18].

Consider a rectangular region with 6 charging stations, there
are 900 groups of EVs that are randomly distributed over this
area with different charging demand, different distance sensi-
tivity θ and different rationality µ. Stations’ relative revenues
are set to be $0.09, $0.118, $0.108, $0.106, $0.112, $0.104,
and the ratios of their service capacity to the average regional
demand are 0.4, 0.3, 0.3, 0.2, 0.5, 0.7.

First, the value of service capacity is highlighted and a
control group is set up, which doubles the service capacity of
the third charging station. Fig. 2 illustrates the geographical
distribution of the users based on their different preferences.
The small circles having the same color represent an EV user
group that favours a particular station. When the third charging
station’s service capacity is doubled, it attracts significantly
more users and its "control region" is expanded further.



TABLE I: Market Analysis
Station Initial Case Doubled Station 3’s Service Capacity

1 2 3 4 5 6 1 2 3 4 5 6
Revenue Share (%) 10.08 20.37 18.88 14.42 22.71 13.53 9.69 19.88 21.06 14.16 22.07 13.15
Market Share (%) 11.87 18.97 19.29 14.01 21.69 14.17 11.29 18.50 22.07 13.65 20.88 12.60

Surcharges (c/KWh) 3.74 5.20 4.74 5.03 4.65 4.06 3.68 5.05 4.10 4.91 4.56 4.00
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Fig. 3: Price and Revenue Analysis.

TABLE. I illustrates the market share and the associated
revenue. It can be observed that increasing the third charging
station’s capacity significantly changes its pricing strategy: the
service surcharge has reduced by 13.51%, but the revenue
share has increased by 11.55%. While service surcharges of
other charging stations have dropped by 1% to 2%. Hence,
investment to improve the service capacity enables the users
to avail services timely, and it also improves the social welfare.

C. Value of Storage

Fig. 3 illustrates two relationships. The first subfigure indi-
cates the changes in the market price and the changes in the
revenue with respect to the service capacity of the third station.
The second subfigure studies their variation with respect to
the storage capacity of the third station. Both measures are
effective in improving the revenue of the station and in
reducing the average market price. However, the first measure
reduces the average revenue of all the charging stations. On
the contrary, investing in the storage capacity offers charging
stations the ability to reduce costs by arbitrage against ToU
pricing, and introduces extra revenue to the market. The effect
of storage capacity on the revenue will not be saturated,
and almost all the additional profits are converted into social
welfare, which is also consistent with the previous analysis.
This suggests that the investment in increasing the storage
capacity is a benign social welfare transfer mechanism.

VI. CONCLUDING REMARKS

In this work, the EV charging station’s decision-making
on the service surcharge in different competitive scenarios
was investigated, including symmetric and general market
conditions. The value of storage to the EV end-users, EV
charging stations has been examined. In the symmetric market
condition, the storage system transfers all the arbitrage gains
to the end-users as improved social welfare, which highlights
its value to be adopted as a public asset by the system operator.

This work can be extended in various ways. For example,
it would be interesting to consider a more practical dynamic
pricing schemes. This may incur significant challenges for the
analysis on the value of storage, as the greedy control policy
may not be optimal in the general pricing schemes. Also,
the work makes an implicit assumption that the EV charging
demands over time follow the same distribution. Machine
learning techniques may improve the quality of EV charging
station’s decision-making by relaxing such an assumption.
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APPENDIX

A. Proof for Theorem 1
It suffices to solve the system of equations, consisting of

the first order optimality condition for each charging station,
which, after simplicity, is as follows:

(πh + µ− pk)
∑n

i=1
e−

pi
µ + (pk − µ)e−

pk
µ = 0,∀k. (22)

In the symmetric market condition, all the charging stations
will set the same charging price:

pk = πh +
n

n− 1
µ,∀k. (23)

It’s also straightforward to verify that the second order
optimality condition at the equilibrium is strictly negative:

∂2Rk
∂pk2

∣∣∣∣
pk=πh+

n
n−1µ

= − 1

nµ
< 0,∀k. (24)

Hence p∗k forms the unique equilibrium. �

B. Proof for Theorem 2
Similar to the proof for Theorem 1, the first order optimality

condition is as follows:

(pk − πh)e−
pk
µ

pk − πh − µ
=

n∑
i=1

e
Li−Lk
µ e−

pi
µ ,∀k. (25)

Then we prove the uniqueness of the solution to Eqs. (25).
Define G(pk) and M as follows:

G(pk) =
(pk − πh)e−

pk
µ

pk − πh − µ
, M =

∑n

i=1
e
Li
µ e−

pi
µ . (26)

From Eqs. (25), pk can be represented by G−1(Me−
Lk
µ ).

According to Eq. (26), we have:

n∑
i=1

e−
G−1(Me

−Li
µ )

µ

Me−
Li
µ

= 1. (27)

Note that, if we consider the left hand side of (27) as M ’s
function, denoted by T (M), then we can show its first order
derivative is always negative. Hence, T (M) is monotonically
decreasing. It indicates that, in Eqs. (25), the right-hand side is
positive, so p∗k should be either lower than πh or higher than
πh + µ. Meanwhile, to achieve positive revenue guarantees
p∗k > πh+µ,∀k. Hence, T (M) can be rearranged as follows:

T (M) =

n∑
i=1

p∗i − πh − µ
p∗i − πh

. (28)

Note that when M is small enough, p∗k −→∞,∀k, and hence
T (M) −→ n. On the other hand, when M is large, p∗k −→
πh+µ,∀k, and hence T (M) −→ 0. Therefore, a unique solution
M∗ to T (M) = 1 exists.

After checking the second order optimality condition at the
equilibrium, we can conclude our proof. �

C. Proof for Theorem 3

The current price response of each charging station (p(t+1)
k )

depends on the previous price response of all charging stations

(p(t)i ’s). Define S(t) =
∑n
i=1 e

Li−p
(t)
i

µ . Given the initial price
P (1) = {p(1)1 , p

(1)
2 , ..., p

(1)
n }, define P (t) = {p(t)1 , p

(t)
2 , ..., p

(t)
n },

S(t) > S(t−1) for round t (t > 1). Note that p(t+1)
k > πh+µ,

which guarantees the monotonicity of the left term:

∂
(p

(t+1)
k −πh)e

Lk−p(t+1)
k
µ

p
(t+1)
k −πh−µ

∂p
(t+1)
k

< 0,∀k. (29)

It’s straightforward to verify p
(t+1)
k < p

(t)
k and S(t+1) >

S(t). Hence, if S(2) > S(1), p(t)k will decrease monotonically
over t when t > 1.

As S(t) is positive for any t, and p(t)k > πh+µ,∀t, accord-
ing to Monotone Convergence Theorem, p(t)k will converge to
a unique limit. If S(2) ≤ S(1), we can obtain similar results.
Because of the uniqueness of Nash equilibrium, this response
dynamics will converge to this unique N.E.. �

D. Proof for Theorem 4
Denote the charging stations’ equilibrium peak price strate-

gies by P ∗1 = {p∗11, ..., p∗1n}, off-peak price strategies by P ∗2 =
{p∗21, ..., p∗2n} and storage investment by C∗ = {C∗1 , ..., C∗n}.
The first order optimality condition with respect to P ∗1 , P ∗2
and C∗ requires for all k:

fk(p
∗
1k)+

(
p∗1k − πh+

H[X](πh−πl)
E[X]

)
f ′k(p

∗
1k) = 0, (30)

fk(p
∗
2k) + (p∗2k − πl) f ′k(p∗2k) = 0, (31)

C∗k = fk(p
∗
1k)F

−1
x (

πh − πl − πs
πh − πl

), (32)

where
H[X] = E

[
X

∣∣∣∣X ≤ F−1x

(
πh − πl − πs
πh − πl

)]
. (33)

The symmetric market condition simplifies solving the sys-
tem of equations. It’s straightforward to show the equilibrium
is exactly as characterized by the theorem.

The uniqueness of p∗1 and p∗2 can be proved following the
same routine in Appendix A. Additionally, the storage capacity
C∗ is uniquely decided by p∗1, which automatically guarantees
its uniqueness. This concludes our proof. �

E. Proof for Theorem 5
Again, we observe exactly the same set of first order

optimality conditions in Appendix D. The difficulty is that
we don’t have the symmetric market conditions.

Note that after replacing the general market share fk(p) with
its definition, combining Eqs. (30) and (31) leads to a similar
form as Eqs. (25). Hence, the uniqueness of equilibrium peak
and off-peak price strategy P ∗1 and P ∗2 can be proved following
the same routine in Appendix B. Same as we proceed in
Appendix D, the storage investment C∗ is again uniquely
decided by P ∗1 . Therefore its uniqueness automatically holds
given the uniqueness of P ∗1 . This concludes our proof. �


